Skip to main content
Log in

Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Activated carbon (AC) supported monometallic Pd and bimetallic Pd-M (M = Co, Ni, and Cu) catalysts were prepared by impregnation-reduction method and investigated for carbon monoxide (CO) oxidation. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed highly disperse Pd-M nanoparticles (~ 3–5 nm) on the AC support. The addition of the second transition metal in Pd/AC resulted in an increase in the specific surface area and smaller average particle size. CO oxidation experiments were carried out in a vertical fixed-bed quartz reactor at gas hourly space velocity (GHSV) of 30,000 h− 1 under atmospheric pressure. The catalytic order is as follows: Pd–Cu/AC > Pd–Ni/AC > Pd–Co/AC > Pd/AC. The T50 (50% CO conversion) value of Pd–Cu/AC and Pd/AC catalysts are 30 and 70 °C. BET, XRD and TEM analysis of the used Pd-M/AC and Pd/AC catalysts were performed in order to find any change in the specific surface area, structure, morphology, and average particle size of the catalysts after CO oxidation. The results showed that the bimetallic Pd-M/AC catalysts had better catalytic activity and stability than the monometallic Pd/AC catalyst. Pd–Cu/AC showed excellent time-on-stream stability of 50 h. The apparent activation energy of the Pd–Cu/AC is found to be 69.32 kJ mol− 1. Thus, bimetallic Pd-M/AC catalysts have a potential for practical CO oxidation reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antonaroli S, Crociani B, Natale CD, Nardis S, Stefanelli M, Paolesse R (2015) Sens Actuator B 208:334

    Article  CAS  Google Scholar 

  2. Duan H, Xu C (2015) J Catal 332:31

    Article  CAS  Google Scholar 

  3. Figueroa SJA, Newton MA (2014) J Catal 312:69

    Article  CAS  Google Scholar 

  4. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park SE (2009) J Phys Chem C 113:15882

    Article  CAS  Google Scholar 

  5. Singhania A, Gupta SM (2018) J Nanosci Nanotechnol 18:4614

    Article  Google Scholar 

  6. Destro P, Marras S, Manna L, Colombo M, Zanchet D (2017) Catal Today 282:105

    Article  CAS  Google Scholar 

  7. Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21:2825

    Article  CAS  Google Scholar 

  8. Hazlett MJ, Moses-Debusk M, Parks ll JE, Allard LE, Epling WS (2017) Appl Catal B 202:404

    Article  CAS  Google Scholar 

  9. Bang K, Shin K, Ryu MS, Kwon S, Lee HM (2016) Catal Today 265:14

    Article  CAS  Google Scholar 

  10. Wu G, Guan N, Li L (2011) Catal Sci Technol 1:601

    Article  CAS  Google Scholar 

  11. Liu D, Zhu YF, Jiang Q (2015) RSC Adv 5:1587

    Article  CAS  Google Scholar 

  12. Choi KH, Lee DH, Kim HS, Yoon YC, Park CS (2016) Ind Eng Chem Res 55:4443

    Article  CAS  Google Scholar 

  13. Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grünert W (2007) J Phys Chem C 111:10478

    Article  CAS  Google Scholar 

  14. Wang Y, Widmann D, Wehm RJ (2017) ACS Catal 7:2339

    Article  CAS  Google Scholar 

  15. Saqlain MA, Antunes FPN, Hussain A, Siddiq M, Leitao AA (2017) New J Chem 41:2073

  16. Singhania A (2017) Ind Eng Chem Res 56:13594

    Article  CAS  Google Scholar 

  17. Han SW, Kim DH, Jeong MG, Park KJ, Kim YD (2016) Chem Eng J 283:992

    Article  CAS  Google Scholar 

  18. Jeong MG, Kim IH, Han SW, Kim DH, Kim YD (2016) J Mol Catal A 414:87

    Article  CAS  Google Scholar 

  19. Wang F, Lu G (2007) Catal Lett 115:46

    Article  CAS  Google Scholar 

  20. Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:264

    Article  CAS  Google Scholar 

  21. Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:1546

    Article  CAS  Google Scholar 

  22. Chua YPG, Gunasooriya GTKK., Saeys M, Seebauer EG (2014) J Catal 311:306

    Article  CAS  Google Scholar 

  23. Wang GY, Lian HL, Zhang WX, Jiang DZ, Wu TH (2002) Kin Catal 43:433

    Article  CAS  Google Scholar 

  24. Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2259/DEL/2014 2014

  25. Singhania A, Krishnan VV, Bhaskarwar AN, Prabhu BN, Parvatalu D, Banerjee S (2016) Int J Hydrogen Energ 41:10538

    Article  CAS  Google Scholar 

  26. Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2308/DEL/2014 2014

  27. Singhania A, Bhaskarwar AN (2017) Catal Rev Sci Eng. https://doi.org/10.1080/01614940.2017.1366189

    Google Scholar 

  28. Lee CW, Park SJ, Kim YS, Chong PJ (1995) Bull Korean Chem Soc 16:296

    CAS  Google Scholar 

  29. Park ED, Lee JS (1998) J Catal 180:123

    Article  CAS  Google Scholar 

  30. Watson JM, Ozkan US (2003) J Catal 217:1

    CAS  Google Scholar 

  31. Rebelli J, Detwiler M, Ma S, Williams CT, Monnier JR (2010) J Catal 270:224

    Article  CAS  Google Scholar 

  32. Kolli NE, Delannoy L, Louis C (2013) J Catal 297:79

    Article  CAS  Google Scholar 

  33. Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D, Banerjee S (2017) Catal Commun 93:5

    Article  CAS  Google Scholar 

  34. Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D (2017) Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.07.088

    Google Scholar 

  35. Singhania A (2017) Catal Lett. https://doi.org/10.1007/s10562-017-2240-0

    Google Scholar 

  36. Wang F, Zhao K, Zhang H, Dong Y, Wang T, He D (2014) Chem Eng J 242:10

    Article  CAS  Google Scholar 

  37. Li D, Wang L, Zhang P, Chen S, Xu J (2013) Catal Commun 37:32

    Article  CAS  Google Scholar 

  38. Wang C, We C, Lauterbach J, Sasmaz E (2017) Appl Catal Environ B 206:1

    Article  Google Scholar 

  39. Wojcieszak R, Zielinski M, Monteverdi S, Bettahar M (2006) J Coll Interface Sci 299:238

    Article  CAS  Google Scholar 

  40. Di L, Xu W, Zhan Z, Zhang X (2015) RSC Adv 5:71854

    Article  CAS  Google Scholar 

  41. Estifaee P, Haghighi M, Mohammadi N, Rahmani F (2014) Ultrason Sonochem 21:1155

    Article  CAS  Google Scholar 

  42. Choi KH, Lee DH, Kim HS, Yoon YC, Park CS, Kim YH (2016) Ind Eng Chem Res 55:4443

    Article  CAS  Google Scholar 

  43. Olmos CM, Chinchilla LE, Delgado JJ, Hungria AB, Blanco G, Calvino JJ, Chen X (2016) Catal Lett 146:144

    Article  CAS  Google Scholar 

  44. Venezia AM, Liotta LF, Parola VL, Deganello G, Beck A, Koppany Z, Frey K, Horvath D, Guczi L (2003) Appl Catal Gen A 251:359

    Article  CAS  Google Scholar 

  45. Bera P, Gayen A, Hegde MS, Lalla NP, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107:6122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank GGSIPU, New Delhi, India for the Grant under FRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Singhania.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhania, A., Gupta, S.M. Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts. Catal Lett 148, 946–952 (2018). https://doi.org/10.1007/s10562-018-2298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2298-3

Keywords

Navigation