Skip to main content
Log in

La, Mn and Zn promoted microporous iron catalysts with high productivity and stability for Fischer–Tropsch synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Fischer–Tropsch synthesis is studied over precipitated Fe catalysts promoted with Mn, Zn and La metals. The results showed that there was a large increase in surface area and pore volume, and a sharp decrease in average pore size upon the addition of promoters. Catalyst productivity and rate of syngas converted as well as hydrocarbon yield increased with addition of promoters to Fe structure during precipitation step. Addition of metal promoters led catalyst samples of microporous structures with relatively high surface areas. This effect probably yielded catalysts with enhanced long-term activity and stability. Samples containing 10 % Zn and 5 % Mn exhibited the highest catalytic activity and stability. Increasing the loading of Zn from 5 to 10 wt% led to a noteworthy increase on yield and productivity as well as rate of syngas converted. The highest productivity was obtained for the sample containing 10 % Zn, highest yield was attained over the sample containing 5 % Mn. The results indicate that the selectivity to C12–C18 range was more pronounced for the catalyst promoted with Mn metal whereas α-olefins and higher molecular weight products were increased with the addition of 5 % Zn over Fe based catalysts. The decrease in temperature from 523 to 493 K resulted in an increase in heavy hydrocarbons and a significant decrease in gaseous and light hydrocarbons for Fe4Si5Mn catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An X, Wu BS, Wan HJ, Li TZ, Tao C, Xiang HW, Li YW (2007) Catal Commun 8:1957–1962

    Article  CAS  Google Scholar 

  2. Miyazawa T, Hanaoka T, Shimura K, Hirata S (2014) Catal Commun 57:36–39

    Article  CAS  Google Scholar 

  3. Özkara-Aydınoğlu Ş, Ataç Ö, Gül ÖF, Kınayyiğit Ş, Şal S, Baranak M, Boz İ (2012) Chem Eng J 181–182:581–589

    Article  Google Scholar 

  4. Li JB, Ma HF, Zhang HT, Sun QW, Ying WY, Fang DY (2014) Reac Kinet Mech Cat 112:409–423

    Article  CAS  Google Scholar 

  5. Liu Y, Chen J-F, Zhang Y (2015) Reac Kinet Mech Cat 114:433–449

    Article  CAS  Google Scholar 

  6. Yan F, Qian W, Sun Q, Zhang H, Ying W (2014) Reac Kinet Mech Cat 113:471–485

    Article  CAS  Google Scholar 

  7. Qian W, Zhang H, Sun Q, Liu Y, Ying W, Fang D (2014) Reac Kinet Mech Cat 111:293–304

    Article  CAS  Google Scholar 

  8. Pour A, Khodabandeh H, Izadyar M, Housaindokht MR (2014) Reac Kinet Mech Cat 111:29–44

    Article  Google Scholar 

  9. Hayakawa H, Tanaka H, Fujimoto K (2007) Catal Commun 8:1820–1824

    Article  CAS  Google Scholar 

  10. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202–217

    Article  CAS  Google Scholar 

  11. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  12. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405–415

    Article  CAS  Google Scholar 

  13. Dictor RA, Bell AT (1986) J Catal 97:121–136

    Article  CAS  Google Scholar 

  14. Bukur DB, Mukesh D, Patel SA (1990) Ind Eng Chem Res 29:194–204

    Article  CAS  Google Scholar 

  15. O’Brien RJ, Xu L, Spicer RL, Davis BH (1996) Energy Fuels 10:921–926

    Article  Google Scholar 

  16. Zhang J, Fan S, Zhao T, Li W, Sun Y (2011) React Kinet Catal Lett 102:437–445

    Article  CAS  Google Scholar 

  17. Ma W-P, Zhao Y-L, Li Y-W, Xu Y-Y, Zhou J-L (1999) React Kinet Catal Lett 66:217–223

    Article  CAS  Google Scholar 

  18. Luo M, O’Brien RJ, Bao S, Davis BH (2002) Appl Catal A 239:111–120

    Article  Google Scholar 

  19. Pham HN, Datye AK (2000) Catal Today 58:233–240

    Article  CAS  Google Scholar 

  20. Yang Y, Xiang HW, Tian L, Wang H, Zhang CH, Tao ZC, Xu YY, Zhong B, Li YW (2005) Appl Catal A 284:105–122

    Article  CAS  Google Scholar 

  21. Wan HJ, Wu BS, Li TZ, Tao ZC, An X, Xiang HW, Li YW (2007) J Fuel Chem Technol 35:589–594

    Article  CAS  Google Scholar 

  22. Wan HJ, Wu BS, Zhang CH, Teng BT, Tao ZC, Yang Y, Zhu YL, Xiang HW, Li YW (2006) Fuel 85:1371–1377

    Article  CAS  Google Scholar 

  23. Tao Z, Yang Y, Wan H, Li T, An X, Xiang H, Li Y (2007) Catal Lett 114:161–168

    Article  CAS  Google Scholar 

  24. Feyzi M, Irandoust M, Mirzaei AA (2011) Fuel Process Technol 92:1136–1143

    Article  CAS  Google Scholar 

  25. Ning W, Koizumi N, Chang H, Mochizuki T, Itoh T, Yamada M (2006) Appl Catal A 312:35–44

    Article  CAS  Google Scholar 

  26. Li S, Li A, Krishnamoorthy S, Iglesia E (2007) Catal Lett 77:197–205

    Article  Google Scholar 

  27. Yang J, Sun Y, Tang Y, Liu Y, Wang H, Tian L, Wang H, Zhang Z, Xiang H, Li Y (2006) J Mol Catal A 245:26–36

    Article  CAS  Google Scholar 

  28. Luo M, Davis BH (2003) Appl Catal A 246:171–181

    Article  CAS  Google Scholar 

  29. Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA (2008) Appl Catal A 348:201–208

    Article  Google Scholar 

  30. Wang D, Cheng X, Huang Z, Wang X, Peng S (1991) Appl Catal 77:109–122

    Article  CAS  Google Scholar 

  31. Zhao L, Liu G, Li J (2009) Chin J Catal 30:637–642

    Article  CAS  Google Scholar 

  32. Wang H, Yang Y, Xu J, Wang H, Ding M, Li Y (2010) J Mol Catal A 326:29–40

    Article  CAS  Google Scholar 

  33. Feyzi M, Jafari F (2012) J Fuel Chem Technol 40:550–557

    Article  CAS  Google Scholar 

  34. Tao Z, Yang Y, Zhang C, Li T, Wang J, Wan H, Xiang H, Li Y (2006) Catal Commun 7:1061–1066

    Article  CAS  Google Scholar 

  35. Ning W, Koizumi N, Yamada M (2007) Catal Commun 8:275–278

    Article  CAS  Google Scholar 

  36. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J (2010) J Nat Gas Chem 19:107–116

    Article  CAS  Google Scholar 

  37. Tao Z, Yang Y, Zhang C, Li T, Ding M, Xiang H, Li Y (2007) J Nat Gas Chem 16:278–285

    Article  CAS  Google Scholar 

  38. Nam SS, Lee J, Kim H, Jun HK, Choi MJ, Lee KW (1997) Energy Convers Manag 38:397–402

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through the Project TÜBİTAK 1007-108G043 “TRIJEN-Liquid Fuel Production from Coal and Biomass Blends.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şeyma Özkara-Aydınoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gül, Ö.F., Ataç, Ö., Boz, İ. et al. La, Mn and Zn promoted microporous iron catalysts with high productivity and stability for Fischer–Tropsch synthesis. Reac Kinet Mech Cat 117, 147–159 (2016). https://doi.org/10.1007/s11144-015-0932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0932-2

Keywords

Navigation