Skip to main content
Log in

Effect of Iron Precursor on Catalytic Performance of Precipitated Iron Catalyst for Fischer–Tropsch Synthesis Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, we synthesized three precipitated iron catalysts using continuous co-precipitation method with three different iron precursors: ferric nitrate Fe(NO3)3, ferrous sulfate FeSO4, ferrous oxalate FeC2O4. The catalysts were characterized with XRD, SEM, XPS, N2 sorption and H2-TPR, respectively. The results indicated that the phases of catalysts using ferrous salts as iron precursor were composed of Fe2O3 and Fe3O4. Especially, the catalyst sample prepared by ferrous oxalate (Fe–C) exhibited the largest crystallite size, the highest crystallinity (99.78%), and the easiest reducibility. Fischer–Tropsch synthesis reaction was carried out to study the catalytic performance of three precipitated iron catalysts. In comparison with the other two catalysts, Fe–C has showed ability of the highest catalytic activity, the best stability and the highest selectivity of C5+ hydrocarbons. All the results lead us to draw a conclusion that the properties of iron precursors can notably affect morphology, phase structure, reduction behaviors and catalytic performances of the catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo M, Li H (2018) Reac Kinet Mech Catal 124:279–291

    Article  CAS  Google Scholar 

  2. Di Z, Zhao T, Feng X et al (2019) Catal Lett 149:279–291

    Article  Google Scholar 

  3. Luo M, Davis BH (2003) Appl Catal A 246:171–181

    Article  CAS  Google Scholar 

  4. Keyvanloo K, Hecker WC, Woodfield BF et al (2014) J Catal 319:220–231

    Article  CAS  Google Scholar 

  5. Xue Y, Ge H, Chen Z et al (2018) J Catal 358:237–242

    Article  CAS  Google Scholar 

  6. Hans S (1999) Appl Catal A 186:3–12

    Article  Google Scholar 

  7. Saheli S, Rezvani AR (2017) J Mol Struct 1144:166–172

    Article  CAS  Google Scholar 

  8. Zhang Q, Kang J, Wang Y (2010) Chem Cat Chem 2:1030–1058

    CAS  Google Scholar 

  9. Ojeda M, Granados ML, Rojas S (2003) J Mol Catal A Chem 202:179–186

    Article  CAS  Google Scholar 

  10. Luo M, Hamdeh H, Davis BH (2009) Catal Today 140:127–134

    Article  CAS  Google Scholar 

  11. Dry ME (2004) Appl Catal A 276:1–3

    Article  CAS  Google Scholar 

  12. Fraser I, Rabiu AM, van Steen E (2016) Energy Procedia 100:210–216

    Article  CAS  Google Scholar 

  13. Hayakawa H, Tanaka H, Fujimoto K (2007) Catal Commun 8:1820–1824

    Article  CAS  Google Scholar 

  14. Sirimanothan N, Hamdeh HH, Zhang Y et al (2002) Catal Lett 82:181–191

    Article  CAS  Google Scholar 

  15. Bukur DB, Sivaraj C (2002) Appl Catal A 231:201–204

    Article  CAS  Google Scholar 

  16. Bian G, Oonuki A, Kobayashi Y et al (2001) Appl Catal A 219:13–14

    Article  CAS  Google Scholar 

  17. Wu B, Bai L, Xiang H (2004) Fuel 83:205–212

    Article  CAS  Google Scholar 

  18. Xiong H, Moyo M, Motchelaho MAM (2010) Appl Catal A Gen 388:168–178

    Article  CAS  Google Scholar 

  19. Torres Galvisa HM, Koekena ACJ, Bitter JH (2013) Catal Today 215:95–102

    Article  Google Scholar 

  20. Wei Y, Luo D, Zhang C (2018) Catal Sci Technol 8:2883–2893

    Article  CAS  Google Scholar 

  21. Ma W, Jacobs G, Sparks DE (2015) J Catal 326:149–160

    Article  CAS  Google Scholar 

  22. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  23. Roosendaal SJ, van Asselen B, Elsenaar JW et al (1999) Surf Sci 442:329–337

    Article  CAS  Google Scholar 

  24. Graat PCJ, Somers MAJ (1996) Appl Surf Sci 100–101:36–40

    Article  Google Scholar 

  25. Graat PCJ, Somers MAJ (1998) Surf Interface Anal 26:773–782

    Article  CAS  Google Scholar 

  26. Ruby C, Humbert B, Fusy J (2000) Surf Interface Anal 29:377–380

    Article  CAS  Google Scholar 

  27. Mekki A, Holland D, McConville CF et al (1996) J Non Cryst Solids 208:267–276

    Article  CAS  Google Scholar 

  28. Yamashita T, Hayes P (2006) J Electron Spectrosc Relat Phenom 152:6–11

    Article  CAS  Google Scholar 

  29. Cheng K, Virgnie M, Ordomsky VV (2015) J Catal 328:139–150

    Article  CAS  Google Scholar 

  30. Brunauer S, Deming LS, Deming WS et al (1940) J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  31. Munteanu G, Ilieva L, Andreeva D (1997) Thermochim Acta 291:171–177

    Article  CAS  Google Scholar 

  32. Jin Y, Datye AK (2000) J Catal 196:8–17

    Article  CAS  Google Scholar 

  33. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1588–1599

    Article  CAS  Google Scholar 

  34. Zhang CH, Yang Y, Teng BT et al (2006) J Catal 237:405–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Luo.

Ethics declarations

Conflict of interest

There is no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, Z., Feng, X., Yang, Z. et al. Effect of Iron Precursor on Catalytic Performance of Precipitated Iron Catalyst for Fischer–Tropsch Synthesis Reaction. Catal Lett 150, 2640–2647 (2020). https://doi.org/10.1007/s10562-020-03158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03158-3

Keywords

Navigation