Skip to main content
Log in

Direct production of light olefins from syngas over potassium modified Fe–Mn catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of potassium promoted Fe–Mn catalysts for light olefin synthesis from CO hydrogenation were prepared by the co-precipitation-calcination-impregnation method. The impact of potassium promoter on the textural properties, reduction behavior, adsorption of hydrogen, bulk phase composition and their correlation with Fischer–Tropsch synthesis (FTS) performances were emphatically studied. As revealed by N2 physisorption, the increasing of potassium had no distinct effect on the size of α-Fe2O3 and surface area. H2 temperature-programmed reduction/desorption showed that potassium inhibited the reduction and hydrogen adsorbability of catalysts. CO temperature-programmed desorption showed that potassium enhanced the CO adsorption of catalysts. X-ray photoelectron spectroscopy indicated the enrichment of promoter atoms on the surface of catalysts. The X-ray diffraction and Mössbauer effect spectroscopy results revealed that potassium made carburization easy. After reduction with syngas (H2/CO = 20) for 48 h, FTS test was performed with the syngas (H2/CO = 3.5) in the high temperature Fischer–Tropsch synthesis process. The maximum of CO conversion and selectivity to light olefins was noted on increasing K content (2.8 mol% K/Fe), followed by a significant decline at the excessive potassium level. At the point, the selectivity of light olefins and olefin/paraffin (C2–C4) was 27.75 mol% and 8.54. The results indicated that potassium promoter could inhibit the water gas shift reaction, suppress hydrogenation ability, which promoted the production of light olefins via suppressing the secondary hydrogenation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steynberg A, Dry M (2004) Fischer-Tropsch technology (studies in surface science and catalysis). Elsevier Science, Amsterdam

    Google Scholar 

  2. Dictor RA, Bell AT (1986) J Catal 97:121–136

    Article  CAS  Google Scholar 

  3. Janardanarao M (1990) Ind Eng Chem Res 29:1735–1753

    Article  CAS  Google Scholar 

  4. Occelli ML, Davis BH (2006) Fischer–Tropsch synthesis, catalysts and catalysis. Elsevier, Amsterdam, pp 197–198

  5. Davis BH, Occelli ML (2009) Advances in Fischer–Tropsch synthesis catalysts and catalysis. CRC Press, Boca raton, pp 120–231

  6. Mirzaei AA, Habibpour R, Kashi E (2005) Appl Catal A 296:222–231

    Article  CAS  Google Scholar 

  7. González-Cortés SL, Rodulfo-Baechler SMA, Oliveros A, Orozco J, Fontal B, Mora AJ, Delgado G (2002) React Kinet Catal L 75:3–12

    Article  Google Scholar 

  8. van den Berg FR, Crajé MWJ, van der Kraan AM, Geus JW (2003) Appl Catal A 242:403–416

    Article  Google Scholar 

  9. Duvenhage DJ, Coville NJ (1997) Appl Catal A 153:43–67

    Article  CAS  Google Scholar 

  10. Malessa R, Baerns M (1988) Ind Eng Chem Res 27:279–283

    Article  CAS  Google Scholar 

  11. Lee Y-J, Park J-Y, Jun K-W, Bae JW, Viswanadham N (2008) Catal Lett 126:149–154

    Article  CAS  Google Scholar 

  12. Soled SL, Iglesia E, Miseo S, DeRites BA, Fiato RA (1995) Top Catal 2:193–205

    Article  CAS  Google Scholar 

  13. Zhang J, Fan S, Zhao T, Li W, Sun Y (2011) React Kinet Catal Lett 102:437–445

    Article  CAS  Google Scholar 

  14. Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Science 335:835–838

    Article  CAS  Google Scholar 

  15. Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) J Catal 303:22–30

    Article  CAS  Google Scholar 

  16. Wang C, Wang Q, Sun X, Xu L (2005) Catal Lett 105:93–101

    Article  CAS  Google Scholar 

  17. Abbot J, Clark NJ, Baker BG (1986) Appl Catal A 26:141–153

    Article  CAS  Google Scholar 

  18. Yang Y, Xiang HW, Xu YY, Li YW (2004) Appl Catal A. 266:181–194

    Article  CAS  Google Scholar 

  19. Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36–43

    Article  CAS  Google Scholar 

  20. Zhang H, Chu W, Zhou J, Hong J, Jing F (2008) React Kinet Catal L 94:139–147

    Article  CAS  Google Scholar 

  21. Rankin JL, Bartholomew CH (1986) J Catal 100:533–540

    Article  CAS  Google Scholar 

  22. Dry RE, Shingles T, Bboshoff LJ, Oosthuizen GJ (1969) J Catal 15:190–199

    Article  CAS  Google Scholar 

  23. Brodén G, Gafner G, Bonzel FG (1979) Surf Sci 84:295–314

    Article  Google Scholar 

  24. Lohitharn N, Jr JGG (2008) J Catal 260:7–16

    Article  CAS  Google Scholar 

  25. Ding MY, Yang Y, Wu BS, Wang TJ, Xiang HW, Li YW (2011) Fuel Process Technol 92:2353–2359

    Article  CAS  Google Scholar 

  26. Ma W, Kugler EL, Dadyburjor DB (2007) Energy Fuel 21:1832–1842

    Article  CAS  Google Scholar 

  27. Ding M, Yang Y, Li Y, Wang T, Ma L, Wu C (2013) Appl Energy 112:1241–1246

    Article  CAS  Google Scholar 

  28. Qian WX, Zhang HT, Ying WY, Fang DY (2011) J Nat Gas Chem 20:389–396

    Article  CAS  Google Scholar 

  29. Leith IR, Howden MG (1988) Appl Catal 37:75–92

    Article  CAS  Google Scholar 

  30. Das SK, Mohanty P, Majhi S, Pant KK (2013) Appl Energy 111:267–276

    Article  CAS  Google Scholar 

  31. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW (2008) J Mol Catal A 283:33–42

    Article  CAS  Google Scholar 

  32. Mahmoud MH, Hamdeh HH, Ho JC, O’She MJ, Walker JC (2000) J Magn Magn Mater 220:139–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Major State Basic Research Program of China (2010CB736203) and the National High-Tech R&D Program of China (2011AA05A204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yong Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JB., Ma, HF., Zhang, HT. et al. Direct production of light olefins from syngas over potassium modified Fe–Mn catalyst. Reac Kinet Mech Cat 112, 409–423 (2014). https://doi.org/10.1007/s11144-014-0716-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0716-0

Keywords

Navigation