Skip to main content
Log in

Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of catalysts prepared by precipitation method were used to investigate the effects of preparation conditions on iron-based catalysts for high-temperature Fischer–Tropsch synthesis (HTFT) of light olefins. In this study, we varied the titration methods (forward precipitation, concurrent precipitation, and reverse precipitation), iron precursors [Fe(NO3)3, Fe2(SO4)3, and FeCl3], precipitants (ammonium carbonate, sodium carbonate, ammonia solution, sodium hydroxide, and potassium hydroxide), precipitation pH values (pH = 6.0, 7.0, 8.0, and 9.0), precipitation temperature (temperature = 25 °C, 45 °C, 65 °C, 75 °C, and 85 °C) and incorporation manners of Mn promoter (precipitation and incipient wetness impregnation method). It was demonstrated that different preparation conditions affect the BET specific surface area, pore structure, the morphology and dispersion of the catalyst, grain size, reduction ability, and CO adsorption ability of the catalyst, which in turn affect the activity of the catalyst and the production of light olefins during the HTFT. The results showed that the iron-based catalysts with the optimum catalytic performance and production of light olefins were prepared under the following conditions: ammonium carbonate as the precipitant and ferric trichloride as the iron precursor by concurrent precipitation method at pH 8.0 and 65 °C, followed by the introduction of Mn promoter by precipitation method. Catalysts were characterized by Ar adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), H2 temperature-programmed reduction (H2-TPR), and CO-temperature-programmed desorption (CO-TPD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Davidson AL, Webb PB, Silverwood IP, Lennon D (2020) The application of quasi-elastic neutron scattering to investigate hydrogen diffusion in an iron-based Fischer-Tropsch synthesis catalyst. Top Catal 63(3–4):378–385

    Article  CAS  Google Scholar 

  2. Liu Y, Deng D, Bao X (2020) Catalysis for selected C1 chemistry. Chem 6(10):2497–2514

    Article  CAS  Google Scholar 

  3. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335(6070):835–838

    Article  Google Scholar 

  4. Toncón Leal CF, Amaya Roncancio S, García Blanco AA, Moreno MS, Sapag K (2019) Confined iron nanoparticles on mesoporous ordered silica for Fischer-Tropsch synthesis. Top Catal 62(12–16):1086–1095

    Article  Google Scholar 

  5. Xue Y, Liu Z, Zhang Y, Duan S, Chen J (2021) Effect of the valence state of iron in the precursors on the Fischer-Tropsch synthesis performance of an Fe/Fe foam catalyst. Ind Eng Chem Res 60(6):2410–2417

    Article  CAS  Google Scholar 

  6. Zhao M, Cui Y, Sun J, Zhang Q (2018) Modified iron catalyst for direct synthesis of light olefin from syngas. Catal Today 316:142–148

    Article  CAS  Google Scholar 

  7. Motjope TR, Dlamini HT, Hearne GR, Coville NJ (2002) Application of in situ Mössbauer spectroscopy to investigate the effect of precipitating agents on precipitated iron Fischer-Tropsch catalysts. Catal Today 71(3):335–341

    Article  CAS  Google Scholar 

  8. Mai K, Elder T, Groom LH, Spivey JJ (2015) Fe-based Fischer Tropsch synthesis of biomass-derived syngas: effect of synthesis method. Catal Commun 65:76–80

    Article  CAS  Google Scholar 

  9. Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. Catal Today 215:95–102

    Article  CAS  Google Scholar 

  10. Wei Y, Luo D, Zhang C, Liu J, He Y, Wen X, Yang Y, Li Y (2018) Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer-Tropsch synthesis. Catal Sci Technol 8(11):2883–2893

    Article  CAS  Google Scholar 

  11. Mirzaei AA, Vahid S, Feyzi M (2009) Fischer-Tropsch synthesis over iron manganese catalysts: effect of preparation and operating conditions on catalyst performance. Adv Phys Chem. https://doi.org/10.1155/2009/151489

    Article  Google Scholar 

  12. Feyzi M, Hassankhani A (2011) Synthesis, characterization and catalytic performance of nanosized iron-cobalt catalysts for light olefins production. J Nat Gas Chem 20(6):677–686

    Article  CAS  Google Scholar 

  13. Wu X, Ma H, Zhang H, Qian W, Liu D, Sun Q, Ying W (2019) High-temperature Fischer-Tropsch synthesis of light olefins over nano-Fe3O4@MnO2 core–shell catalysts. Ind Eng Chem Res 58(47):21350–21362

    Article  CAS  Google Scholar 

  14. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Article  CAS  Google Scholar 

  15. Ahn C, Bae JW (2016) Fischer-Tropsch synthesis on the Al2O3-modified ordered mesoporous Co3O4 with an enhanced catalytic activity and stability. Catal Today 265:27–35

    Article  CAS  Google Scholar 

  16. Han Z, Qian W, Zhang H, Ma H, Sun Q, Ying W (2020) Effect of rare-earth promoters on precipitated iron-based catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 59(33):14598–14605

    Article  CAS  Google Scholar 

  17. Pendyala VRR, Graham UM, Jacobs G, Hamdeh HH, Davis BH (2014) Fischer-Tropsch synthesis: morphology, phase transformation, and carbon-layer growth of iron-based catalysts. ChemCatChem 6(7):1952–1960

    Article  CAS  Google Scholar 

  18. Gu M, Dai S, Qiu R, Ford ME, Cao C, Wachs IE, Zhu M (2021) Structure–activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction. ACS Catal 11(20):12609–12619

    Article  CAS  Google Scholar 

  19. Li J, Cheng X, Zhang C, Wang J, Dong W, Yang Y, Li Y (2017) Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion. J Chem Technol Biotechnol 92(6):1472–1480

    Article  CAS  Google Scholar 

  20. Ma Z, Ma H, Zhang H, Wu X, Qian W, Sun Q, Ying W (2021) Direct conversion of syngas to light olefins through Fischer-Tropsch synthesis over Fe–Zr catalysts modified with sodium. ACS Omega 6(7):4968–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang Q, Zhang C, Liu C, Wei Y, Cheruvathur AV, Dugulan AI, Niemantsverdriet JW, Liu X, He Y, Qing M, Zheng L, Yun Y, Yang Y, Li Y (2018) Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts. ACS Catal 8(4):3304–3316

    Article  CAS  Google Scholar 

  22. Opeyemi Otun K, Yao Y, Liu X, Hildebrandt D (2021) Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: a critical review. Fuel 296:120689

    Article  CAS  Google Scholar 

  23. Petersen MA, van Rensburg WJ (2015) CO dissociation at vacancy sites on Hägg iron carbide: direct versus hydrogen-assisted routes investigated with DFT. Top Catal 58(10–11):665–674

    Article  CAS  Google Scholar 

  24. Hayakawa H, Tanaka H, Fujimoto K (2007) Preparation of a new precipitated iron catalyst for Fischer-Tropsch synthesis. Catal Commun 8(11):1820–1824

    Article  CAS  Google Scholar 

  25. Mishra T, Parida KM (2006) Effect of sulfate on the surface and catalytic properties of iron–chromium mixed oxide pillared clay. J Colloid Interface Sci 301(2):554–559

    Article  CAS  PubMed  Google Scholar 

  26. Li T, Yang Y, Tao Z, Wan H, An X, Zhang C, Xiang H, Li Y (2007) Effect of sulfate on an iron manganese catalyst for Fischer-Tropsch synthesis. J Nat Gas Chem 16(4):354–362

    Article  CAS  Google Scholar 

  27. Xu J, Chang Z, Zhu K, Weng X, Weng W, Zheng Y, Huang C, Wan H (2016) Effect of sulfur on α-Al2O3-supported iron catalyst for Fischer-Tropsch synthesis. Appl Catal A 514:103–113

    Article  CAS  Google Scholar 

  28. Wu X, Qian W, Ma H, Zhang H, Liu D, Sun Q, Ying W (2019) Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Fuel 257:120567

    Article  Google Scholar 

  29. Yang S, Chun H, Lee S, Han S, Lee K, Kim Y (2020) Comparative study of olefin production from CO and CO2 using Na- and K-promoted zinc ferrite. ACS Catal 10(18):10742–10759

    Article  CAS  Google Scholar 

  30. Yang Y, Xiang H, Xu Y, Bai L, Li Y (2004) Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. Appl Catal A 266(2):181–194

    Article  CAS  Google Scholar 

  31. Liu Y, Chen J, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5(6):3905–3909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National High Technology Research and Development Plan of China (863 plan, 2011AA05A204) and the Fundamental Research Funds for the Central Universities (No. JKA01211710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Qian.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1000 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, H., Ma, H. et al. Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins. Top Catal 66, 508–522 (2023). https://doi.org/10.1007/s11244-022-01684-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01684-5

Keywords

Navigation