Skip to main content
Log in

Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Catalytic processes are an indispensable part of a large number of contemporary technologies that stimulate a constant research and development effort in the field. Computational methods represent a valuable tool to investigate crucial steps of catalytic cycles able to reveal the main characteristics of a catalyst and provide a basis for the design of materials with superior catalytic activity. This review is focused on the recent advances in density functional theory studies of the interactions of reactive species and intermediates with solid surfaces. As examples, we discuss the catalysts for the CO oxidation and electrocatalysis of H2 and O2 electrode reactions. We demonstrate how the theoretical modelling can contribute to the understanding of catalytic processes and help to design new catalysts and electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Maxwell IE (1996) Stud Surf Sci Catal 101:1–9

    Article  CAS  Google Scholar 

  2. Nørskov JK, Abild-Pedersena F, Studt F, Bligaard T (2011) Proc Natl Acad Sci 118:937–943

    Article  Google Scholar 

  3. Marković NM, Ross PN (2002) Progr Surf Sci 45:117–229

    Article  Google Scholar 

  4. Sabatier P (1911) Ber Deutch Chem Soc 44:1984–2001

    Article  CAS  Google Scholar 

  5. Brønsted JN (1928) Chem Rev 5:231–338

    Article  Google Scholar 

  6. Evans MG, Polanyi NP (1938) Trans Faraday Soc 34:11–24

    Article  CAS  Google Scholar 

  7. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217

    Article  CAS  Google Scholar 

  8. Opportunities for Catalysis in the 21st Century, Basic Energy Sciences Advisory Committee Subpanel Workshop Report (2002). http://science.energy.gov/~/media/bes/besac/pdf/Catalysis_report.pdf. Accesses 15 Sept 2014

  9. Putanov P (2010) New breakthroughs in catalysis and the quiet scientific and technological revolution. In: Putanov P (ed) Catalysis in scientific and educational programs and in public development of Serbia. Serbian Academy of Sciences and Arts, Branch in Novi Sad, Novi Sad pp 13–25

  10. Pettersson LGM, Nilsson A (2014) Top Catal 57:2–13

    Article  CAS  Google Scholar 

  11. Hammer B, Nørskov JK (1995) Nature 376:238–240

    Article  CAS  Google Scholar 

  12. Nilsson A, Pettersson LGM (2008) In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam

    Google Scholar 

  13. Pasti IA, Baljozović M, Skorodumova NV (2014) Surf Sci. doi:10.1016/j.susc.2014.09.012

    Google Scholar 

  14. Amft M, Skorodumova NV (2010) Phys Rev B 81:195443

    Article  Google Scholar 

  15. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403–407

    Article  CAS  Google Scholar 

  16. Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S (2004) Catal Commun 5:611–615

    Article  CAS  Google Scholar 

  17. Frusteri F, Freni S, Chiodo V, Spadaro L, Di Blasi O, Bonura G, Cavallaro S (2004) Appl Catal A Gen 270:1–7

    Article  CAS  Google Scholar 

  18. Hansen EW, Neurock M (2000) J Catal 196:241–252

    Article  CAS  Google Scholar 

  19. Linic S, Barteau MA (2003) J Catal 214:200–212

    Article  CAS  Google Scholar 

  20. Trasatti S (1972) J Electroanal Chem 39:163–184

    Article  CAS  Google Scholar 

  21. Jerkiewicz G (1998) Prog Surf Sci 57:137–186

    Article  CAS  Google Scholar 

  22. Quaino P, Juarez F, Santos E, Schmickler W (2014) Beilstein J Nanotechnol 5:846–854

    Article  CAS  Google Scholar 

  23. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  24. Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  25. Pallassana V, Neurock M, Hansen LB, Nørskov JK (2000) J Chem Phys 112:5435–5439

    Article  CAS  Google Scholar 

  26. Tang H, Trout BL (2005) J Phys Chem B 109:17630–17634

    Article  CAS  Google Scholar 

  27. Pašti IA, Gavrilov NM, Mentus SV (2014) Electrochim Acta 130:453–463

    Article  Google Scholar 

  28. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  29. Mom RV, Cheng J, Koper MTM, Sprik M (2014) J Phys Chem C 118:4095–4102

    Article  CAS  Google Scholar 

  30. Aryanpour M, Khetan A, Pitsch H (2013) ACS Catal 3:1253–1262

    Article  CAS  Google Scholar 

  31. Fajin JLC, Cordeiro M, Illas F, Gomes JRB (2010) J Catal 276:92–100

    Article  CAS  Google Scholar 

  32. Vojvodic A, Hellman A, Ruberto C, Lundqvist BI (2009) Phys Rev Lett 103:146103

    Article  CAS  Google Scholar 

  33. Cheng J, Hu P (2008) J Am Chem Soc 130:10868–10869

    Article  CAS  Google Scholar 

  34. Andersson MP, Bligaard T, Kustov A, Larsen KE, Greeley J, Johannessen T, Christensen CH, Nørskov JK (2006) J Catal 239:501–506

    Article  CAS  Google Scholar 

  35. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320–1322

    Article  CAS  Google Scholar 

  36. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404–8405

    Article  CAS  Google Scholar 

  37. Grabow LS, Studt F, Abild-Pedersen F, Petzold V, Kleis J, Bligaard T, Nørskov JK (2011) Angew Chem Int Ed 50:4601–4605

    Article  CAS  Google Scholar 

  38. Sauer J (2008) In: Morokuma K, Musaev DG (eds) Computational modeling for homogeneous and enzymatic catalysis. Wiley, Weinheim

    Google Scholar 

  39. Sauer J, Döbler J (2004) Dalton Trans 19:3116–3121

    Article  Google Scholar 

  40. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385

    Article  CAS  Google Scholar 

  41. Vojvodic A, Nørskov JK (2011) Science 334:1355–1356

    Article  CAS  Google Scholar 

  42. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Nat Chem 3:546–550

    Article  CAS  Google Scholar 

  43. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  44. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23–J26

    Article  Google Scholar 

  45. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2005) Nat Mater 5:909–913

    Article  Google Scholar 

  46. Lee YL, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D (2011) Energy Environ Sci 4:3966–3970

    Article  CAS  Google Scholar 

  47. Engel T, Ertl G (1979) Adv Catal 28:1–78

    CAS  Google Scholar 

  48. Eley DD, Rideal EK (1946) Nature 146:401–402

    Article  Google Scholar 

  49. Stampfl C, Scheffler M (1997) Phys Rev Lett 78:1500–1503

    Article  CAS  Google Scholar 

  50. Hendriksen BLM, Frenken JWM (2002) Phys Rev Lett 89:046101

    Article  CAS  Google Scholar 

  51. Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229–242

    Article  CAS  Google Scholar 

  52. Zhang C, Hu P, Alavi A (1999) J Am Chem Soc 121:7931–7932

    Article  CAS  Google Scholar 

  53. Over H, Muhler M (2003) Prog Surf Sci 72:3–17

    Article  CAS  Google Scholar 

  54. Gong XQ, Liu ZP, Raval R, Hu P (2004) J Am Chem Soc 126:8–9

    Article  CAS  Google Scholar 

  55. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553

    Article  CAS  Google Scholar 

  56. Broqvist P, Panas I, Persson H (2002) J Catal 210:198–206

    Article  CAS  Google Scholar 

  57. Shapovalov V, Metiu H (2007) J Catal 245:205–214

    Article  CAS  Google Scholar 

  58. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Phys Rev B 76:174119

    Article  Google Scholar 

  59. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Appl Phys Lett 90:031909

    Article  Google Scholar 

  60. Chen F, Liu D, Zhang J, Hu P, Gong XQ, Lu G (2012) Phys Chem Chem Phys 14:16573–16580

    Article  CAS  Google Scholar 

  61. Song YL, Yin LL, Zhang J, Hu P, Gong XQ, Lu G (2013) Surf Sci 618:140–147

    Article  CAS  Google Scholar 

  62. Liu ZP, Hu P, Alavi A (2002) J Am Chem Soc 124:14770–14779

    Article  CAS  Google Scholar 

  63. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  64. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  65. Amft M, Johansson B, Skorodumova NV (2012) J Chem Phys 136:024312

    Article  Google Scholar 

  66. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767–11775

    Article  CAS  Google Scholar 

  67. Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262–11263

    Article  CAS  Google Scholar 

  68. Häkkinen H, Landman U (2001) J Am Chem Soc 123:9704–9705

    Article  Google Scholar 

  69. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232–235

    Article  CAS  Google Scholar 

  70. Molina LM, Hammer B (2003) Phys Rev Lett 90:206102

    Article  CAS  Google Scholar 

  71. Molina LM, Hammer B (2004) Phys Rev B 69:155424

    Article  Google Scholar 

  72. Stamatakis M, Christiansen MA, Vlachos DG, Mpourmpakis G (2012) Nano Lett 12:3621–3626

    Article  CAS  Google Scholar 

  73. Liu ZP, Gong XQ, Kohanoff J, Sanchez C, Hu P (2003) Phys Rev Lett 91:266102

    Article  Google Scholar 

  74. Liu LM, McAllister B, Ye HQ, Hu P (2006) J Am Chem Soc 128:4017–4022

    Article  CAS  Google Scholar 

  75. Song W, Hensen EJM (2013) Catal Sci Technol 3:3020–3029

    Article  CAS  Google Scholar 

  76. Bongiorno A, Landman U (2005) Phys Rev Lett 95:106102

    Article  Google Scholar 

  77. Amft M, Skorodumova NV (2001) arXiv:1108.4669v1 [cond-mat.mes-hall]

  78. Santos E, Quaino P, Schmickler W (2012) Phys Chem Chem Phys 14:11224–11233

    Article  CAS  Google Scholar 

  79. Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2009) Z Phys Chem 221:1209–1220

    Article  Google Scholar 

  80. Conway BE (1995) Prog Surf Sci 49:331–452

    Article  CAS  Google Scholar 

  81. Björketun ME, Bondarenko AS, Abrams BL, Chorkendorff I, Rossmeisl J (2010) Phys Chem Chem Phys 12:10536–10541

    Article  Google Scholar 

  82. Esposito DV, Hunt ST, Kimmel YC, Chen JG (2012) J Am Chem Soc 134:3025–3033

    Article  CAS  Google Scholar 

  83. Esposito DV, Chen JG (2011) Energy Environ Sci 4:3900–3912

    Article  CAS  Google Scholar 

  84. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Angew Chem Int Ed 49:9859–9862

    Article  CAS  Google Scholar 

  85. Nikolic VM, Perovic IM, Gavrilov NM, Pašti IA, Saponjic AB, Vulic PJ, Karic SD, Babic BM, Marceta Kaninski MP (2014) Int J Hydrogen Energy 39:11175–11185

    Article  CAS  Google Scholar 

  86. Vasić DD, Pašti IA, Mentus SV (2013) Int J Hydrog Energy 38:5009–5018

    Article  Google Scholar 

  87. Vasić Anićijević DD, Nikolić VM, Marčeta-Kaninski MP, Pašti IA (2013) Int J Hydrog Energy 38:16071–16079

    Article  Google Scholar 

  88. Kelly TG, Stottlemyer AL, Ren H, Chen JG (2011) J Phys Chem C 115:6644–6650

    Article  CAS  Google Scholar 

  89. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Science 315:493–497

    Article  CAS  Google Scholar 

  90. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  91. Stamenković V, Mun BS, Mayrhofer KJ, Ross PN, Marković NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897–2901

    Article  Google Scholar 

  92. Ramírez-Caballero GE, Ma Y, Callejas-Tovara R, Balbuena PB (2010) Phys Chem Chem Phys 12:2209–2218

    Article  Google Scholar 

  93. Balbuena PB, Callejas-Tovar R, Hirunsit P, Martínez de la Hoz JM, Ma Y, Ramírez-Caballero GE (2012) Top Catal 55:332–335

    Article  Google Scholar 

  94. Calle-Vallejo F, Koper MTM, Bandarenka AS (2013) Chem Soc Rev 42:5210–5230

    Article  CAS  Google Scholar 

  95. Wang Y, Balbuena PB (2005) J Phys Chem B 109:18902-18706

    Google Scholar 

  96. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  97. Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Energy Environ Sci 5:6744–6762

    Article  CAS  Google Scholar 

  98. Escudero-Escribano M, Verdaguer-Casadevall A, Malacrida P, Grønbjerg U, Knudsen BP, Jepsen AK, Rossmeisl J, Stephens IEL, Chorkendorff I (2012) J Am Chem Soc 134:16476–16479

    Article  CAS  Google Scholar 

  99. Pašti IA, Gavrilov NM, Baljozović M, Mitrić M, Mentus SV (2013) Electrochim Acta 114:706–712

    Article  Google Scholar 

  100. Pašti I, Mentus S (2009) Mater Chem Phys 116:94–101

    Article  Google Scholar 

Download references

Acknowledgments

I.A.P. and S.V.M. acknowledge the support provided by the Serbian Ministry of Education, Science and Technological Development through the contract no. III45014. I.A.P. and N.V.S. acknowledge the support provided by the Swedish Research Council through the project “Catalysis by metal clusters supported by complex oxide substrates”. S.V.M. also acknowledges the support provided by the Serbian Academy of Sciences and Arts through the project “Electrocatalysis in the contemporary processes of energy conversion”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavko V. Mentus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pašti, I.A., Skorodumova, N.V. & Mentus, S.V. Theoretical studies in catalysis and electrocatalysis: from fundamental knowledge to catalyst design. Reac Kinet Mech Cat 115, 5–32 (2015). https://doi.org/10.1007/s11144-014-0808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0808-x

Keywords

Navigation