Skip to main content
Log in

Evolution of Pt and Pt-Alloy Catalytic Surfaces Under Oxygen Reduction Reaction in Acid Medium

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We review our recent work that employs a series of computational techniques including density functional theory, ab initio molecular dynamics, and classical molecular dynamics to investigate changes in the structure and electronic properties of Pt-based alloy catalysts under oxygen reduction reaction conditions in acid medium. We show density-functional theory-based correlations between surface segregation and the oxidation state of the subsurface atoms, and their effects on metal dissolution. Since the onset of Pt dissolution coincides with that of surface oxidation, surface reconstruction phenomena is evaluated using ab initio and classical molecular dynamics at increasing degrees of oxidation on extended surfaces and nanoparticles, including the effects of water and an acidic solution. Significant reconstruction and compositional changes are observed as the surface is modified by the presence of adsorbates and electrolyte components. Finally we discuss the consequences of dealloying and suggest an explanation for the enhanced activity observed experimentally in the resultant nanoporous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu XW, Ye SY (2007) J Power Sources 172:133–144

    Article  CAS  Google Scholar 

  2. Antolini E (2003) J Mater Sci 38:2995–3005

    Article  CAS  Google Scholar 

  3. Shao YY, Yin GP, Gao YZ (2007) J Power Sources 171:558–566

    Article  CAS  Google Scholar 

  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Cat B 56:9–35

    Article  CAS  Google Scholar 

  5. Peng ZM, Yang H (2009) Nano Today 4:143–164

    Article  CAS  Google Scholar 

  6. Greeley J, Mavrikakis M (2004) Nat Mat 3:810–815

    Article  CAS  Google Scholar 

  7. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  8. Greeley J, Norskov JK, Mavrikakis M (2002) Ann Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  9. Norskov JK, Scheffler M, Toulhoat H (2006) MRS Bull 31:669–674

    Article  CAS  Google Scholar 

  10. Hyman MP, Medlin JW (2007) J Phys Chem C 111:17052–17060

    Article  CAS  Google Scholar 

  11. Kitchin JR, Reuter K, Scheffler M (2008) Phys Rev B 77:075437

    Article  CAS  Google Scholar 

  12. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  13. Wang Y, Balbuena PB (2005) J Phys Chem B 109:18902–18906

    Article  CAS  Google Scholar 

  14. Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717–4725

    Article  CAS  Google Scholar 

  15. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  16. Sidik RA, Anderson AB (2002) J Electroanal Chem 528:69–76

    Article  CAS  Google Scholar 

  17. Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E (2004) J Electrochem Soc 151:A2016–A2027

    Article  CAS  Google Scholar 

  18. Balbuena PB, Altomare D, Agapito LA, Seminario JM (2003) J Phys Chem B 107:13671–13680

    Article  CAS  Google Scholar 

  19. Balbuena PB, Altomare D, Vadlamani N, Bingi S, Agapito LA, Seminario JM (2004) J Phys Chem A 108:6378–6384

    Article  CAS  Google Scholar 

  20. Jacob T, Muller RP, Goddard I WA (2003) J Phys Chem B 107:9465–9476

    Article  CAS  Google Scholar 

  21. Wang Y, Balbuena PB (2005) J Chem Theory Comp 1:935–943

    Article  CAS  Google Scholar 

  22. Wang Y, Balbuena PB (2004) J Phys Chem B 108:4376–4384

    Article  CAS  Google Scholar 

  23. Wang Y, Balbuena PB (2005) J Phys Chem B 109:14896–14907

    Article  CAS  Google Scholar 

  24. Roques J, Anderson AB (2005) Surf Sci 581:105–117

    Article  CAS  Google Scholar 

  25. Roques J, Anderson AB, Vivek SM, Mukerjee S (2005) J Electrochem Soc 152:E193–E199

    Article  CAS  Google Scholar 

  26. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  27. Xu Y, Mavrikakis M (2002) Surf Sci 505:369

    Article  CAS  Google Scholar 

  28. Xu Y, Mavrikakis M (2002) J Chem Phys 116:10846–10853

    Article  CAS  Google Scholar 

  29. Nilekar AU, Xu Y, Zhang J, Vukmirovic M, Sasaki K, Adzic RR, Mavrikakis M (2007) Top Catal 46:276–284

    Article  CAS  Google Scholar 

  30. Nilekar AU, Mavrikakis M (2008) Surf Sci 602:L89–L94

    Article  CAS  Google Scholar 

  31. Schnur S, Gross A (2011) Catal Today 165:129–137

    Article  CAS  Google Scholar 

  32. Taylor CD, Wasileski SA, Filhol JS, Neurock M (2006) Phys Rev B 73

  33. Rossmeisl J, Norskov JK, Taylor CD, Janik MJ, Neurock M (2006) J Phys Chem B 110:21833–21839

    Article  CAS  Google Scholar 

  34. Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) J Phys Chem C 113:1109–1125

    Article  CAS  Google Scholar 

  35. Ferreira PJ, Ia OGJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  36. Keith JA, Jerkiewicz G, Jacob T (2010) Chem Phys Chem 11:2779–2794

    Article  CAS  Google Scholar 

  37. Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dulak M, Thygesen KS, Norskov JK, Jacobsen KW (2011) Catal Lett 141:1067–1071

    Article  CAS  Google Scholar 

  38. Tritsaris GA, Greeley J, Rossmeisl J, Norskov JK (2011) Catal Lett 141:909–913

    Article  CAS  Google Scholar 

  39. Chen JG, Menning CA, Zellner MB (2008) Surf Sci Rep 63:201–254

    Article  CAS  Google Scholar 

  40. Menning CA, Chen JG (2008) J Chem Phys 128:164703

    Article  CAS  Google Scholar 

  41. Menning CA, Hwu HH, Chen JGG (2006) J Phys Chem B 110:15471–15477

    Article  CAS  Google Scholar 

  42. Ruban AV, Skriver HL, Norskov JK (1999) Phys Rev B 59:15990–16000

    Article  Google Scholar 

  43. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) J Electroanal Chem 554–555:191–199

    Google Scholar 

  44. Ma Y, Balbuena PB (2008) Surf Sci 602:107–113

    Article  CAS  Google Scholar 

  45. Ma Y, Balbuena PB (2009) Surf Sci 603:349–353

    Article  CAS  Google Scholar 

  46. Greeley J, Norskov JK (2007) Electrochim Acta 52:5829–5836

    Article  CAS  Google Scholar 

  47. Ma Y, Balbuena PB (2008) J Phys Chem C 112:14520–14528

    Article  CAS  Google Scholar 

  48. Strasser P, Koh S, Greeley J (2008) Phys Chem Chem Phys 10:3670–3683

    Article  CAS  Google Scholar 

  49. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Top Catal 46:249–262

    Article  CAS  Google Scholar 

  50. Vukmirovic MB, Zhang J, Sasaki K, Nilekar AU, Uribe F, Mavrikakis M, Adzic RR (2007) Electrochim Acta 52:2257–2263

    Article  CAS  Google Scholar 

  51. Shao MH, Sasaki K, Liu P, Adzic RR (2007) Int J Res Phys Chem Chem Phys 221:1175–1190

    CAS  Google Scholar 

  52. Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127:12480–12481

    Article  CAS  Google Scholar 

  53. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science (Washington, DC, United States) 315:493–97

  54. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  55. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  56. Gu Z, Balbuena PB (2007) J Phys Chem C 111:9877–9883

    Article  CAS  Google Scholar 

  57. Gu Z, Balbuena PB (2007) J Phys Chem C 111:17388–17396

    Article  CAS  Google Scholar 

  58. Gu Z, Balbuena PB (2008) J Phys Chem C 112:5057–5065

    Article  CAS  Google Scholar 

  59. Wang XP, Kumar R, Myers DJ (2006) Electrochem Sol St Lett 9:A225–A227

    Article  CAS  Google Scholar 

  60. Ramirez-Caballero GE, Ma Y, Callejas-Tovar R, Balbuena PB (2010) Phys Chem Chem Phys 12:2209–2218

    Article  CAS  Google Scholar 

  61. Lide DR (2009) CRC handbook of chemistry and physics, 89th edn. Taylor and Francis, Boca Raton

    Google Scholar 

  62. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  63. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  64. Hennig D, Ganduglia-Pirovano MV, Scheffler M (1996) Phys Rev B 53:10344–10347

    Article  CAS  Google Scholar 

  65. Liu G, St. Clair TP, Goodman DW (1999) J Phys Chem B 103:8578–8582

    Article  CAS  Google Scholar 

  66. Ramirez-Caballero GE, Balbuena PB (2010) J Phys Chem Lett 1:724–728

    Article  CAS  Google Scholar 

  67. Ramirez-Caballero GE, Hirunsit P, Balbuena PB (2010) J Chem Phys 133:134705

    Article  CAS  Google Scholar 

  68. Dubau L, Durst J, Maillard F, Guetaz L, Chatenet M, Andre J, Rossinot E (2011) Electrochim Acta 56:10658–10667

    Article  CAS  Google Scholar 

  69. Chen C, Levitin G, Hess DW, Fuller TF (2007) J Power Sources 169:288–295

    Article  CAS  Google Scholar 

  70. Nagy Z, You H (2002) Electrochim Acta 47:3037–3055

    Article  CAS  Google Scholar 

  71. Conway BE (1995) Prog Surf Sci 49:331–452

    Article  CAS  Google Scholar 

  72. Hawkins JM, Weaver JF, Asthagiri A (2009) Phys Rev B 79:13

    Article  CAS  Google Scholar 

  73. Martinez-De La Hoz JM, Leon-Quintero DF, Hirunsit P, Balbuena PB (2010) Chem Phys Lett 498:328–333

    Article  CAS  Google Scholar 

  74. Bjorling A, Herrero E, Feliu JM (2011) J Phys Chem C 115:15509–15515

    Article  CAS  Google Scholar 

  75. Bandlow J, Kaghazchi P, Jacob T, Papp C, Trankenschuh B, Streber R, Lorenz MPA, Fuhrmann T, Denecke R, Steinruck HP (2011) Phys Rev B 83

  76. Mitsushima S, Koizumi Y, Uzuka S, Ota K-I (2008) Electrochim Acta 54:455–460

    Article  CAS  Google Scholar 

  77. Callejas-Tovar R, Balbuena PB (2011) Phys Chem Chem Phys 13:20461–20470

    Article  CAS  Google Scholar 

  78. Callejas-Tovar R, Liao W, Martinez De La Hoz JM, Balbuena PB (2011) J Phys Chem C 115:4104–4113

    Article  CAS  Google Scholar 

  79. Callejas-Tovar R, Liao W, Mera H, Balbuena PB (2011) J Phys Chem C 115:23768–23777

    Article  CAS  Google Scholar 

  80. Arthur JW, Haymet ADJ (1998) Fluid Phase Equilib 150:91–96

    Article  Google Scholar 

  81. Arthur JW, Haymet ADJ (1999) J Chem Phys 110:5873–5883

    Article  CAS  Google Scholar 

  82. Duh DM, Perera DN, Haymet ADJ (1995) J Chem Phys 102:3736–3746

    Article  CAS  Google Scholar 

  83. Hirunsit P, Balbuena PB (2009) Surf Sci 603:911–919

    Google Scholar 

  84. Kan HH, Colmyer RJ, Asthagiri A, Weaver JF (2009) J Phys Chem C 113:1495–1506

    Article  CAS  Google Scholar 

  85. Kan HH, Weaver JF (2009) Surf Sci 603:2671–2682

    Article  CAS  Google Scholar 

  86. Mani P, Srivastava R, Strasser P (2011) J Power Sources 196:666–673

    Article  CAS  Google Scholar 

  87. Yang RZ, Leisch J, Strasser P, Toney MF (2010) Chem Mater 22:4712–4720

    Article  CAS  Google Scholar 

  88. Shao MH, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) J Am Chem Soc 132:9253–9255

    Article  CAS  Google Scholar 

  89. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450–453

    Article  CAS  Google Scholar 

  90. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) J Electrochem Soc 157:A82–A97

    Article  CAS  Google Scholar 

  91. Policastro SA, Carnahan JC, Zangari G, Bart-Smith H, Seker E, Begley MR, Reed ML, Reynolds PF, Kelly RG (2010) J Electrochem Soc 157:C328–C337

    Article  CAS  Google Scholar 

  92. Ding Y, Kim YJ, Erlebacher J (2004) Adv Mater 16:1897

  93. Snyder J, Asanithi P, Dalton AB, Erlebacher J (2008) Adv Mater 20:4883

    Article  CAS  Google Scholar 

  94. El-Sayed M (2001) Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  95. Aballe L, Barinov A, Stojic N, Binggeli N, Mentes TO, Locatelli A, Kiskinova M (2010) J Phys Condens Mater 22:015001

    Article  CAS  Google Scholar 

  96. Li QX, Simon SL (2009) Macromolecules 42:3573–3579

    Article  CAS  Google Scholar 

  97. Borgoo A, Tozer DJ, Geerlings P, De Proft F (2009) Phys Chem Chem Phys 11:2862–2868

    Article  CAS  Google Scholar 

  98. Aballe L, Barinov A, Locatelli A, Heun S, Kiskinova M (2004) Phys Rev Lett 93:196103

    Article  CAS  Google Scholar 

  99. Principi E, Witkowska A, Dsoke S, Marassi R, Di Cicco A (2009) Phys Chem Chem Phys 11:9987–9995

    Article  CAS  Google Scholar 

  100. Ramirez-Caballero GE, Balbuena PB (2009) J Phys Chem C 113:7851–7856

    Article  CAS  Google Scholar 

  101. Ramirez-Caballero GE, Balbuena PB (2010) Phys Chem Chem Phys 12:12466–12471

    Article  CAS  Google Scholar 

  102. Ramirez-Caballero GE, Balbuena PB (2010) Chem Phys Lett 507:117–121

    Article  CAS  Google Scholar 

  103. Ramirez-Caballero GE, Mathkari A, Balbuena PB (2011) J Phys Chem C 115:2134–2139

    Article  CAS  Google Scholar 

  104. Martinez de la Hoz JM, Balbuena PB (2011) J Phys Chem C 115:21324–21333

    Article  CAS  Google Scholar 

  105. Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Nat Mater 9:904–907

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Department of Energy, grant DE-FG02-05ER15729. Computational resources from Texas A&M University Supercomputer center, from the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and from the University of Texas at Austin TACC system are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Balbuena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbuena, P.B., Callejas-Tovar, R., Hirunsit, P. et al. Evolution of Pt and Pt-Alloy Catalytic Surfaces Under Oxygen Reduction Reaction in Acid Medium. Top Catal 55, 322–335 (2012). https://doi.org/10.1007/s11244-012-9800-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9800-8

Keywords

Navigation