Skip to main content
Log in

A dynamic watermarking scheme for quantum images using quantum wavelet transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Commentary to this article was published on 02 July 2014

Abstract

In this paper, a novel watermarking scheme based on quantum wavelet transform (QWT) is proposed. Firstly, the wavelet coefficients are extracted by executing QWT on quantum image. Then, we utilize a dynamic vector for controlling embedding strength instead of a fixed parameter for embedding process in other schemes. Analysis and results show that the proposed dynamic watermarking scheme has better visual quality under a higher embedding capacity and outperforms the existing schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)

    Article  MathSciNet  Google Scholar 

  2. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  3. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005).

  4. Sun, B., Le, P.Q., Iliyasu, A.M., Adrian Garcia, J., Yan, F., Dong, J.F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB\(\alpha \) color space. Proceedings of the IEEE 7th International Symposium on Intelligent, Signal Processing, pp. 160–165 (2011).

  5. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. doi:10.1007/s10773-012-1274-8 (2012)

  6. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Iliyasu, A.M., Phuc, Q.L., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2011)

    Article  Google Scholar 

  8. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. doi:10.1007/s11128-012-0423-6 (2012)

  9. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Fijany, A., Williams, C.P.: Quantum wavelet transform: fast algorithm and complete circuits. LNCS 1509, 10–33 (1999)

    MathSciNet  Google Scholar 

  11. Barenco, A., Ekert, A., Suominen, K.-A., Torma, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54, 139 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  13. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. Klappenecker, A., Rotteler, M.: Discrete cosine transforms on quantum computers. In: IEEE Proceedings of the 2nd International Symposium on Image and Signal Processing and, Analysis, 464–468 (2001).

  15. Pang, C.Y., Zhou, Z.W., Guo, G.C.: Quantum discrete cosine transform for image compression. arXiv, preprint quant-ph/0601043 (2006).

  16. Labunets, V., Rundblad, E.L., Egiazarian, K., Karen, Astola, J.: Fast classical and quantum fractional Walsh transforms. In: IEEE Proceedings of the 2nd International Symposium on Image and Signal Processing and, Analysis, 558–563 (2001).

  17. Zhang, F., Zhang, X., Zhang, H.: Digital image watermarking capacity and detection error rate. Pattern Recognit. Lett. 28, 1–10 (2008)

    Article  Google Scholar 

  18. Yaghmaee, F., Jamzad, M.: Estimating watermarking capacity in gray scale images based on image complexity. EURASIP J. Adv. Signal Process. doi:10.1155/2010/851920 (2010)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61100187, 11201100), the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2010046), Heilongjiang Province Educational Department Funds of China (12521107) and the Youth Foundation at the Harbin University of Science and Technology (2011YF009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, XH., Wang, S., Liu, S. et al. A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf Process 12, 3689–3706 (2013). https://doi.org/10.1007/s11128-013-0629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0629-2

Keywords

Navigation