Skip to main content
Log in

Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Concatenated Greenberger–Horne–Zeilinger (C-GHZ) state, which encodes physical qubits in a logic qubit, has great application in the future quantum communication. We present an efficient entanglement concentration protocol (ECP) for recovering less-entangled C-GHZ state into the maximally entangled C-GHZ state with the help of cross-Kerr nonlinearities and photon detectors. With the help of the cross-Kerr nonlinearity, the obtained maximally entangled C-GHZ state can be remained for other applications. Moreover, the ECP can be used repeatedly, which can increase the success probability largely. Based on the advantages above, our ECP may be useful in the future long-distance quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)

    Article  Google Scholar 

  6. Zhang, C., Li, C.F., Guo, G.C.: Experimental demonstration of photonic quantum ratchet. Sci. Bull. 60, 249–255 (2015)

    Article  MathSciNet  Google Scholar 

  7. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. Chin. Phys. Mech. Astro. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  8. Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. Chin. Phys. Mech. Astro. 57, 1210–1217 (2014)

    Article  ADS  Google Scholar 

  9. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. Chin. Phys. Mech. Astro. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  10. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128–1132 (2015)

    Article  Google Scholar 

  11. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  13. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  14. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  16. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093–4105 (2013)

    Article  ADS  Google Scholar 

  17. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  18. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  19. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  21. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  22. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  23. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  25. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  26. Wang, H.F., Sun, L.L., Zhang, S., Yeon, K.H.: Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Inf. Process. 11, 431–441 (2012)

    Article  MATH  Google Scholar 

  27. Wang, H.F., Zhang, S., Yeon, K.H.: Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states. J. Opt. Soc. Am. B. 27, 2159–2164 (2010)

    Article  ADS  Google Scholar 

  28. Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical scheme for entanglement concentration of two partially entangled three-photon W states. Eur. Phys. J. D. 56, 271–275 (2010)

    Article  ADS  Google Scholar 

  29. Liang, B.B., Hu, S., Cui, W.X., An, C.S., Xing, Y., Hu, J.S., Sun, G.Q., Jiang, X.X., Wang, H.F.: Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by quantum dot-microcavity coupled system. Laser Phys. Lett. 11, 115202 (2014)

    Article  ADS  Google Scholar 

  30. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  31. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  33. Zhou, L.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)

    Article  Google Scholar 

  34. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077–2099 (2015)

    Article  ADS  MATH  Google Scholar 

  36. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305–1320 (2015)

    Article  ADS  MATH  Google Scholar 

  37. Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Quantum Inf. Process. 12, 2577–2585 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. Chin. Phys. Mech. Astro. 58, 1–8 (2015)

    Google Scholar 

  39. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087–2101 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307–1320 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967–1978 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14, 1265–1277 (2015)

    Article  ADS  MATH  Google Scholar 

  43. Wang, C., Cao, C., He, L.Y., Zhang, C.L.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf. Process. 13, 1025–1034 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 14, 4131–4146 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Liu, J., Zhao, S.Y., Zhou, L., Sheng, Y.B.: Electronic cluster state entanglement concentration based on charge detection. Chin. Phys. B 23, 020313 (2014)

    Article  ADS  Google Scholar 

  46. Sheng, Y.B., Liu, J., Zhao, S.Y., Wang, L., Zhou, L.: Entanglement concentration for W-type entangled coherent states. Chin. Phys. B 23, 080305 (2014)

    Article  ADS  Google Scholar 

  47. Sheng, Y.B., Feng, Z.F., Ou-Yang, Y., Qu, C.C., Zhou, L.: Arbitrary partially entangled three-electron state concentration with controlled-not gates. Chin. Phys. Lett. 31, 050303 (2014)

    Article  ADS  Google Scholar 

  48. Sheng, Y.B., Zhou, L.: Efficient electronic entanglement concentration assisted by single mobile electrons. Chin. Phys. B 11, 110303 (2013)

    Article  Google Scholar 

  49. Fröwis, F., Dür, W.: Stable macroscopic quantum superpositions. Phys. Rev. Lett. 106, 110402 (2011)

    Article  ADS  Google Scholar 

  50. Fröwis, F., Dür, W.: Stability of encoded macroscopic quantum superpositions. Phys. Rev. A 85, 052329 (2012)

    Article  ADS  Google Scholar 

  51. Kesting, F., Fröwis, F., Dür, W.: Effective noise channels for encoded quantum systems. Phys. Rev. A 88, 042305 (2013)

    Article  ADS  Google Scholar 

  52. Ding, D., Yan, F.L., Gao, T.: Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales. J. Opt. Soc. Am. B 30, 3075–3078 (2013)

    Article  ADS  Google Scholar 

  53. Lu, H., Chen, L.K., Liu, C., Xu, P., Yao, X.C., Li, L., Liu, N.L., Zhao, B., Chen, Y.A., Pan, J.W.: Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions. Nat. Photonics 8, 364–368 (2014)

    Article  ADS  Google Scholar 

  54. Sheng, Y.B., Zhou, L.: Entanglement analysis for macroscopic Schrödinger’s Cat state. EPL 109, 40009 (2015)

    Article  ADS  Google Scholar 

  55. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  56. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  57. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  58. Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel. Quantum Inf. Process. 13, 1413–1424 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating \(\chi \)-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)

    Article  ADS  Google Scholar 

  62. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  63. Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847–2860 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Lin, Q.: Optical parity gate and a wide range of entangled states generation. Sci. Chin. Phys. Mech. Astro. 58, 1–10 (2015)

    Article  ADS  Google Scholar 

  65. Ding, D., Yan, F.L., Gao, T.: Entangler and analyzer for multiphoton Greenberger–Horne–Zeilinger states using weak nonlinearities. Sci. Chin. Phys. Mech. Astro. 57, 2098–2103 (2014)

    Article  ADS  Google Scholar 

  66. He, Y.Q., Ding, D., Yan, F.L., Gao, T.: Exploration of photon-number entangled states using weak nonlinearities. Opt. Express 23, 21671–21677 (2015)

    Article  ADS  Google Scholar 

  67. Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14, 1919–1932 (2015)

    Article  ADS  MATH  Google Scholar 

  68. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  69. Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Quantum Fourier transform of polarization photons mediated by weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 30, 2765–2773 (2013)

    Article  ADS  Google Scholar 

  70. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Y.J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30, 589–597 (2013)

    Article  ADS  Google Scholar 

  71. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Y.J., Yi, X.X.: Preparing, linking, and unlinking cluster-type polarization-entangled states by integrating modules. Prog. Theor. Exp. Phys 9, 0903A01 (2013)

    Google Scholar 

  72. Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Perfect distribution of four-photon \(\chi \)-type entangled states over an arbitrary collective noise channel by spatial degree of freedom. Opt. Commun. 308, 304–308 (2013)

    Article  ADS  Google Scholar 

  73. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Y.J., Yi, X.X.: Two-party quantum privacy comparison with polarization-entangled Bell states and the coherent states. Quantum Inf. Comput. 14, 236–254 (2014)

    MathSciNet  Google Scholar 

  74. Xiu, X.M., Li, Q.Y., Dong, L., Shen, H.Z., Li, D., Gao, Y.J., Yi, X.X.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14, 361–372 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Wang, H.F., Zhu, A.D., Zhang, S.: Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Opt. Express 21, 12484–12494 (2013)

    Article  ADS  Google Scholar 

  76. Nielsen, A.E.B., Muschik, C.A., Giedke, G., Vollbrecht, K.G.H.: Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities. Phys. Rev. A 81, 043832 (2010)

    Article  ADS  Google Scholar 

  77. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  78. Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)

    Article  ADS  Google Scholar 

  79. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  80. Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302(R) (2006)

    Article  ADS  Google Scholar 

  81. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  82. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)

    Article  ADS  Google Scholar 

  83. Feizpour, A., Xing, X.X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  84. Hofmann, H.F., Kojima, K., Takeuchi, S., Sasaki, K.: Optimized phase switching using a single-atom nonlinearity. J. Opt. B 5, 218–221 (2003)

    Article  ADS  Google Scholar 

  85. Hoi, I.C., Kockum, A.F., Palomaki, T., Stace, T.M., Fan, B., Tornberg, L., Sathyamoorthy, S.R., Johansson, G., Delsing, P., Wilson, C.M.: Giant cross-Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013)

    Article  ADS  Google Scholar 

  86. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    Article  ADS  Google Scholar 

  87. Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474168, 61401222, and 61475197), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039, the Qing Lan Project in Jiangsu Province, and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Zhou, L., Gu, SP. et al. Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf Process 15, 1669–1687 (2016). https://doi.org/10.1007/s11128-016-1246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1246-7

Keywords

Navigation