Skip to main content
Log in

Preparation of multipartite entangled states used for quantum information networks

  • Review
  • Special Topic: Quantum Information
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum computation. In this paper, we review the experimental progress in the preparation of cluster states and multi-color entangled states with continuous variables. The preparation of lager scale multipartite entangled state provide valuable quantum resources to implement more complex quantum informational tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Braunstein S L, Pati A K. Quantum Information with Continuous Variables. Berlin: Springer, 2003

    Book  MATH  Google Scholar 

  3. Bouwmeester D, Ekert A, Zeilinger A. The Physics of Quantum Information. Berlin: Springer, 2000

    Book  MATH  Google Scholar 

  4. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  5. Furusawa A, Sorensen J L, Braustein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  ADS  Google Scholar 

  6. Mattle K, Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communication. Phys Rev Lett, 1996, 76: 4656–4659

    Article  ADS  Google Scholar 

  7. Li X Y, Pan Q, Jing J T, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys Rev Lett, 2002, 88: 047904

    Article  ADS  Google Scholar 

  8. Walther P, Resch K J, Rudolphet T, et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176

    Article  ADS  Google Scholar 

  9. Chen K, Li C M, Zhang Q, et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys Rev Lett, 2007, 99: 120503

    Article  ADS  Google Scholar 

  10. Wang Y, Su X L, Shen H, et al. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys Rev A, 2010, 81: 022311

    Article  ADS  Google Scholar 

  11. Ukai R, Yokoyama S, Yoshikawa J I, et al. Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys Rev Lett, 2011, 107: 250501

    Article  ADS  Google Scholar 

  12. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  13. Menicucci N C, van Loock P, Gu M, et al. Universal quantum computation with continuous-variable cluster states. Phys Rev Lett, 2006, 97: 110501

    Article  ADS  Google Scholar 

  14. Zhang J, Braunstein S L. Continuous-variable Gaussian analog of cluster states. Phys Rev A, 2006, 73: 032318

    Article  ADS  Google Scholar 

  15. Van Loock P, Weedbrook C, Gu M. Building Gaussian cluster states by linear optics. Phys Rev A, 2007, 76: 032321

    Article  ADS  Google Scholar 

  16. Gu M, Weedbrook C, Menicucci N C, et al. Quantum computing with continuous-variable clusters. Phys Rev A, 2009, 79: 062318

    Article  ADS  Google Scholar 

  17. Van Loock P. Examples of Gaussian cluster computation. J Opt Soc Am B, 2007, 24: 340–346

    Article  ADS  Google Scholar 

  18. Tan A H, Xie C D, Peng K C. Quantum logical gates with linear quadripartite cluster states of continuous variables. Phys Rev A, 2009, 79: 042338

    Article  ADS  Google Scholar 

  19. Miwa Y, Yoshikawa J I, van Loock P, et al. Demonstration of a universal one-way quantum quadratic phase gate. Phys Rev A, 2009, 80: 050303 (R)

    Article  ADS  Google Scholar 

  20. Ukai R, Iwata N, Shimokawa Y, et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys Rev Lett, 2011, 106: 240504

    Article  ADS  Google Scholar 

  21. Huang Y F, Liu B H, Peng L, et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat Commun, 2011, 2: 546

    Article  ADS  Google Scholar 

  22. Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement. Nat Photon, 2012, 6: 225–228

    Article  ADS  Google Scholar 

  23. Su X L, Zhao Y P, Hao S H, et al. Experimental preparation of eightpartite cluster state for photonic qumodes. Opt Lett, 2012, 37: 5178–5180

    Article  ADS  Google Scholar 

  24. Su X L, Hao S H, Zhao Y P, et al. Demonstration of eight-partite twodiamond shape cluster state for continuous variables. Front Phys, 2013, 8: 20–26

    Article  Google Scholar 

  25. Yokoyama S, Ukai R, Armstrong S C, et al. Optical generation of ultralarge-scale continous-variable cluster states. arxiv:1306.3366v1

  26. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  ADS  Google Scholar 

  27. Jia X J, Zhang J, Wang Y, et al. Superactivation of multipartite unlockable bound entanglement. Phys Rev Lett, 2012, 108: 190501

    Article  ADS  Google Scholar 

  28. Jing J, Zhang J, Yan Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys Rev Lett, 2003, 90: 167903

    Article  ADS  Google Scholar 

  29. Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431: 430–433

    Article  ADS  Google Scholar 

  30. Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

    Article  ADS  Google Scholar 

  31. Su X L, Tan A, Jia X, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys Rev Lett, 2007, 98: 070502

    Article  ADS  Google Scholar 

  32. Yukawa M, Ukai R, van Loock P, et al. Experimental generation of four-mode continuous-variable cluster states. Phys Rev A, 2008, 78: 012301

    Article  ADS  Google Scholar 

  33. Tan A H, Wang Y, Jin X L, et al. Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables. Phys Rev A, 2008, 78: 013828

    Article  ADS  Google Scholar 

  34. Pysher M, Miwa Y, Shahrokhshahi R, et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys Rev Lett, 2011, 107: 030505

    Article  ADS  Google Scholar 

  35. Armstrong S, Morizur J F, Janousek J, et al. Programmable multimode quantum networks. Nat Commun, 2012, 3: 1026

    Article  ADS  Google Scholar 

  36. Wang Y J, Zheng Y H, Xie C D, et al. High-power low-noise Nd: YAP/LBO laser with dual wavelength outputs. IEEE J Quantum Electron, 2011, 47: 1006–1013

    Article  ADS  Google Scholar 

  37. Wang Y, Shen H, Jin X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier. Opt Express, 2010, 18: 6149–6155

    Article  ADS  Google Scholar 

  38. Zhang Y, Wang H, Li X Y, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys Rev A, 2000, 62: 023813

    Article  ADS  MathSciNet  Google Scholar 

  39. Van Loock P, Furusawa A. Detecting genuine multipartite continuousvariable entanglement. Phys Rev A, 2003, 67: 052315

    Article  ADS  Google Scholar 

  40. Villar A S, Cruz L S, Cassemiro K N, et al. Generation of bright two-color continuous variable entanglement. Phys Rev Lett, 2005, 95: 243603

    Article  ADS  Google Scholar 

  41. Su X L, Tan A H, Jia X J, et al. Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams. Opt Lett, 2006, 31: 1133–1135

    Article  ADS  Google Scholar 

  42. Jing J, Feng S, Bloomer R, et al. Experimental continuous-variable entanglement from a phase-difference-locked optical parametric oscillator. Phys Rev A, 2006, 74: 041804

    Article  ADS  Google Scholar 

  43. Keller G, D’Auria V, Treps N, et al. Experimental demonstration of frequency-degenerate bright EPR beams with a self-phase-locked OPO. Opt Express, 2008, 16: 9351–9356

    Article  ADS  Google Scholar 

  44. Li Y M, Guo X M, Bai Z L, et al. Generation of two-color continuous variable quantum entanglement at 0.8 and 1.5 μm. App Phys Lett, 2010, 97: 031107

    Article  ADS  Google Scholar 

  45. Coelho A S, Barbosa F A S, Cassemiro K N, et al. Three-color entanglement. Science, 2009, 326: 823–826

    Article  ADS  Google Scholar 

  46. Jia X J, Yan Z H, Duan Z Y, et al. Experimental realization of threecolor entanglement at optical fiber communication and atomic storage wavelengths. Phys Rev Lett, 2012, 109: 253604

    Article  ADS  Google Scholar 

  47. Villar A S, Martinelli M, Fabre C, et al. Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator. Phys Rev Lett, 2006, 97: 140504

    Article  ADS  Google Scholar 

  48. Cassemiro K N, Villar A S. Scalable continuous-variable entanglement of light beams produced by optical parametric oscillators. Phys Rev A, 2008, 77: 022311

    Article  ADS  Google Scholar 

  49. Tan A H, Xie C D, Peng K C. Bright three-color entangled state produced by cascaded optical parametric oscillators. Phys Rev A, 2012, 85: 013819

    Article  ADS  Google Scholar 

  50. Glockl O, Andersen U L, Lorenz S, et al. Sub-shot-noise phase quadrature measurement of intense light beams. Opt Lett, 2004, 29: 1936–1938

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KunChi Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Jia, X., Xie, C. et al. Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210–1217 (2014). https://doi.org/10.1007/s11433-013-5358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5358-0

Keywords

Navigation