Skip to main content
Log in

Entangler and analyzer for multiphoton Greenberger-Horne-Zeilinger states using weak nonlinearities

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the regime of weak nonlinearity we present two general, feasible schemes for manipulating photon states. One is an entangler for generating any one of the n-photon Greenberger-Horne-Zeilinger (GHZ) states. Interactions of the incoming photons with cross-Kerr media followed by a phase shift gate and a measurement on a probe beam plus appropriate local operations using classical feed-forward of the measurement results allow one to obtain the desired states in a nearly deterministic manner. The second scheme discussed is an analyzer for multiphoton maximally entangled states, which is derived from the above entangler. In this scheme, all of the 2n n-photon GHZ states can, nearly deterministically, be discriminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Wen K, Long G L. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys Rev A, 2005, 72: 022336

    Article  ADS  Google Scholar 

  3. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Yan F L, Yan T. Probabilistic teleportation via a non-maximally entangled GHZ state. Chin Sci Bull, 2010, 55: 902–906

    Article  Google Scholar 

  6. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  7. Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Li M, Fei S M. Bell inequalities for multipartite qubit quantum systems and their maximal violation. Phys Rev A, 2012, 86: 052119

    Article  ADS  Google Scholar 

  9. Ding D, Yan F L, Gao T. Bell-type inequality and quantum nonlocality in four-qubit systems. arXiv:quant-ph/1310.6300

  10. Klyshko D N. The Bell and GHZ theorems: A possible three-photon interference experiment and the question of nonlocality. Phys Lett A, 1993, 172: 399–403

    Article  ADS  Google Scholar 

  11. Greenberger D M, Horne M A, Shimony A, et al. Bell’s theorem without inequalities. Am J Phys, 1990, 58: 1131–1143

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys Rev A, 2000, 62: 062314

    Article  MathSciNet  ADS  Google Scholar 

  13. Gühne O, Tóth G. Entanglement detection. Phys Rep, 2009, 474: 1–75

    Article  MathSciNet  ADS  Google Scholar 

  14. Yan F L, Gao T, Chitambar E. Two local observables are sufficient to characterize maximally entangled states of N qubits. Phys Rev A, 2011, 83: 022319

    Article  ADS  Google Scholar 

  15. Milburn G J, Walls D F. State reduction in quantum-counting quantum nondemolition measurements. Phys Rev A, 1984, 30: 56–60

    Article  ADS  Google Scholar 

  16. Imoto N, Haus H A, Yamamoto Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys Rev A, 1985, 32: 2287–2292

    Article  ADS  Google Scholar 

  17. Braginsky V B, Khalili F Y. Quantum nondemolition measurements: The route from toys to tools. Rev Mod Phys, 1996, 68: 1–11

    Article  MathSciNet  ADS  Google Scholar 

  18. Grangier P, Levenson J A, Poizat J P. Quantum non-demolition measurements in optics. Nature (London), 1998, 396: 537–542

    Article  ADS  Google Scholar 

  19. Barrett S D, Kok P, Nemoto K, et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys Rev A, 2005, 71: 060302

    Article  ADS  Google Scholar 

  20. Munro WJ, Nemoto K, Beausoleil R G, et al. High-efficiency quantumnondemolition single-photon-number-resolving detector. Phys Rev A, 2005, 71: 033819

    Article  ADS  Google Scholar 

  21. Nemoto K, Munro W J. Nearly deterministic linear optical controlled-NOT gate. Phys Rev Lett, 2004, 93: 250502

    Article  ADS  Google Scholar 

  22. Sheng Y B, Deng F G, Zhou H Y. Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys Rev A, 2008, 77: 042308

    Article  ADS  Google Scholar 

  23. Deng F G. Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys Rev A, 2011, 84: 052312

    Article  ADS  Google Scholar 

  24. Wang C, Li Y S, Hao L. Optical implementation of quantum random walks using weak cross-Kerr media. Chin Sci Bull, 2011, 56: 2088–2091

    Article  Google Scholar 

  25. Zou X B, Pahlke K, Mathis W. Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay. Phys Rev A, 2003, 68: 024302

    Article  ADS  Google Scholar 

  26. Duan L M, Kimble H J. Efficient engineering of multiatom entanglement through single-photon detections. Phys Rev Lett, 2003, 90: 253601

    Article  ADS  Google Scholar 

  27. Jin L, Song Z. Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering. Phys Rev A, 2009, 79: 042341

    Article  ADS  Google Scholar 

  28. Wang X T, Bayat A, Bose S, et al. Global control methods for Greenberger-Horne-Zeilinger-state generation on a one-dimensional Ising chain. Phys Rev A, 2010, 82: 012330

    Article  ADS  Google Scholar 

  29. Feng W, Wang P Y, Ding X M, et al. Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback. Phys Rev A, 2011, 83: 042313

    Article  ADS  Google Scholar 

  30. Zheng A S, Liu J B. Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities. J Phys B-At Mol Opt Phys, 2011, 44: 165501

    Article  ADS  Google Scholar 

  31. Lin Q. Efficient generation of multi-photon W state (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42: 54–60

    Article  Google Scholar 

  32. Zeilinger A, Horne M A, Weinfurter H, et al. Three-particle entanglements from two entangled pairs. Phys Rev Lett, 1997, 78: 3031–3034

    Article  ADS  Google Scholar 

  33. Bouwmeester D, Pan JW, Daniell M, et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys Rev Lett, 1999, 82: 1345–1349

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435–4438

    Article  ADS  Google Scholar 

  35. Sagi Y. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons. Phys Rev A, 2003, 68: 042320

    Article  ADS  Google Scholar 

  36. Louis S G R, Nemoto K, Munro W J, et al. The efficiencies of generating cluster states with weak nonlinearities. New J Phys, 2007, 9: 193

    Article  Google Scholar 

  37. Jin G S, Lin Y, Wu B. Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity. Phys Rev A, 2007, 75: 054302

    Article  ADS  Google Scholar 

  38. Wang Y, Ye L, Fang B L. A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity. Chin Phys B, 2011, 20: 100313

    Article  ADS  Google Scholar 

  39. Kok P. Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys Rev A, 2008, 77: 013808

    Article  ADS  Google Scholar 

  40. Munro W J, Nemoto K, Spiller T P. Weak nonlinearities: a new route to optical quantum computation. New J Phys, 2005, 7: 137

    Article  Google Scholar 

  41. Lin Q, He B, Bergou J A, et al. Processing multiphoton states through operation on a single photon: Methods and applications. Phys Rev A, 2009, 80: 042311

    Article  ADS  Google Scholar 

  42. Ding D, Yan F L. Efficient scheme for three-photon Greenberger-Horne-Zeilinger state generation. Phys Lett A, 2013, 377: 1088–1094

    Article  ADS  Google Scholar 

  43. Schuck C, Huber G, Kurtsiefer C, et al. Complete deterministic linear optics Bell state analysis. Phys Rev Lett, 2006, 96: 190501

    Article  ADS  Google Scholar 

  44. Pavičić M. Near-deterministic discrimination of all Bell states with linear optics. Phys Rev Lett, 2011, 107: 080403

    Article  ADS  Google Scholar 

  45. Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59: 2044–2046

    Article  ADS  Google Scholar 

  46. Pan J W, Zeilinger A. Greenberger-Horne-Zeilinger-state analyzer. Phys Rev A, 1998, 57: 2208–2211

    Article  MathSciNet  ADS  Google Scholar 

  47. Qian J, Feng X L, Gong S Q. Universal Greenberger-Horne-Zeilingerstate analyzer based on two-photon polarization parity detection. Phys Rev A, 2005, 72: 052308

    Article  ADS  Google Scholar 

  48. Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318

    Article  ADS  Google Scholar 

  49. Guo Q, Cheng L Y, Wang H F, et al. Complete N photon GHZ state analyzer and its applications to quantum communication. Opt Commun, 2012, 285: 1571–1575

    Article  ADS  Google Scholar 

  50. Ding D, Yan F L. Quantum nondemolition measurement of two-photon Bell-state and three-photon Greenberger-Horne-Zeilinger-state based on weak nonlinearities (in Chinese). Acta Phys Sin, 2013, 62: 100304

    Google Scholar 

  51. Wang C, He L Y, Zhang Y, et al. Complete entanglement analysis on electron spins using quantum dot and microcavity coupled system. Sci China-Phys Mech Astron, 2013, 56: 2054–2058

    Article  MathSciNet  ADS  Google Scholar 

  52. Ding D, Yan F L, Gao T. Preparation of km-photon concatenated GHZ states for observing distinct quantum effects at macroscopic scale. J Opt Soc Am B, 2013, 30: 3075–3078

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengLi Yan or Ting Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Yan, F. & Gao, T. Entangler and analyzer for multiphoton Greenberger-Horne-Zeilinger states using weak nonlinearities. Sci. China Phys. Mech. Astron. 57, 2098–2103 (2014). https://doi.org/10.1007/s11433-014-5498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5498-x

Keywords

Navigation