Skip to main content
Log in

Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Lichens are poikilohydric symbiotic organisms that can survive in the absence of water. Photosynthesis must be highly regulated in these organisms, which live under continuous desiccation-rehydration cycles, to avoid photooxidative damage. Analysis of chlorophyll a fluorescence induction curves in the lichen microalgae of the Trebouxiophyceae Asterochloris erici and in Trebouxia jamesii (TR1) and Trebouxia sp. (TR9) phycobionts, isolated from the lichen Ramalina farinacea, shows differences with higher plants. In the presence of the photosynthetic electron transport inhibitor DCMU, the kinetics of Q A reduction is related to variable fluorescence by a sigmoidal function that approaches a horizontal asymptote. An excellent fit to these curves was obtained by applying a model based on the following assumptions: (1) after closure, the reaction centers (RCs) can be converted into “energy sink” centers (sRCs); (2) the probability of energy leaving the sRCs is very low or zero and (3) energy is not transferred from the antenna of PSII units with sRCs to other PSII units. The formation of sRCs units is also induced by repetitive light saturating pulses or at the transition from dark to light and probably requires the accumulation of reduced Q A, as well as structural changes in the reaction centers of PSII. This type of energy sink would provide a very efficient way to protect symbiotic microalgae against abrupt changes in light intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Antenna

b:

Photosystem II reaction center

B t :

Fraction of closed PSII reaction centers at time t

Chyp :

Constant that determines the degree of curvature of fluorescence induction curves

cl:

Closed RC

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

E :

Energy influx

F o :

Minimal Chl a fluorescence intensity in dark-adapted samples

F m :

Maximal Chl a fluorescence intensity in dark-adapted samples

F v :

Maximum variable Chl a fluorescence (F v = F m − F o)

F v/F m :

An estimate of the maximal quantum yield of PSII photochemistry

F t :

Fluorescence intensity at time t during exposure of samples to light

φ PSII :

Effective quantum efficiency of PSII photochemistry

J :

Light absorption flux per antenna complex or reaction center

K :

Rate constant for the transformation of closed centers to energy sink centers

op:

Open RC

NPQ:

Non-photochemical quenching of excited state of Chl a

OKJIP:

Reference to the typical shape of a fluorescence induction curve (O, origin; K, J, I, three inflection points that appear successively in the induction curve; P, peak)

PQ:

Plastoquinone

PSI:

Photosystem I

P700:

Reaction center of the PSI

PSII:

Photosystem II

p 2,2 :

Probability of excitation energy transfer between two different antenna systems

p 2,b :

Probability of excitation energy transfer between the antenna and P680

Phe:

Pheophytin

p 2G :

Global probability for excitation energy transfer (“exciton” transfer) from one PSII unit to another

RC:

Reaction center

s:

Energy sink

ROS:

Reactive oxygen species

S m :

Complementary area of the fluorescence transient

S t :

Complementary area of the fluorescence transient at time t

V t :

Relative variable fluorescence at time t (V t = F t − F o/F m − F o)

References

  • Ahdmajian V (1973) Methods of isolating and culturing lichen symbionts and thalli. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 653–659

    Google Scholar 

  • Allen JF, Mullineaux CW, Sanders CE, Melis A (1989) State transitions, photosystem stoichiometry adjustment and non-photochemical quenching in cyanobacterial cells acclimated to light absorbed by photosystem I or photosystem II. Photosynth Res 22:157–166

    Article  CAS  PubMed  Google Scholar 

  • Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Barták M, Gloser J, Hájek J (2005) Visualized photosynthetic characteristics of the lichen Xanthoria elegans related to daily courses of light, temperature and hydration: a field study from Galindez Island, maritime Antarctica. Lichenologist 37:433–443

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Structure and functioning of biological soil crusts: a synthesis. In: Belnap J, Lange OL (eds) Biological soil crust: structure, function and management. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Bilger W, Rimke S, Schreiber U, Lange OL (1989) Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. J Plant Phys 134:261–268

    Article  CAS  Google Scholar 

  • Bold HC, Parker BC (1962) Some supplementary attributes in the classification of Chlorococcum species. Arch Mikrobiol 42:267–288

    Article  CAS  PubMed  Google Scholar 

  • Bukhow NG, Carpentier R (2004) Effects of water stress on the photosynthetic efficiency of plants. In: Papageorgiou GC, Govindjee G (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 623–635

    Chapter  Google Scholar 

  • Bussotti F, Desotgiua R, Cascioa C, Pollastrini M, Gravanoa E, Gerosab G, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manesd F, Schaube M, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30

    Article  CAS  Google Scholar 

  • Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ Microbiol 13:806–818

    Article  CAS  PubMed  Google Scholar 

  • Cleland RE, Melis A, Neale PJ (1985) Mechanism of photoinhibition: photochemical reaction center inactivation in system II of chloroplasts. In: Amesz J, Hoff AJ, Van Gorkum HJ (eds) Current topics in photosynthesis. Martinus Nijhoff Publishers, Dordrecht, pp 77–86

    Google Scholar 

  • del Prado R, Sancho LG (2007) Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain). Flora 202:417–428

    Article  Google Scholar 

  • Duysens LMN, Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Japan Society of Plant Physiologists (eds) Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo, pp 353–372

  • Fernández-Marín B, Becerril JM, García-Plazaola JI (2010) Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta 231(6):1335–1342

    Article  PubMed  Google Scholar 

  • Fos S, Deltoro VI, Calatayud A, Barreno E (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31:375–387

    Google Scholar 

  • Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    Article  CAS  PubMed  Google Scholar 

  • Gasulla F, Guéra A, Barreno E (2010) A simple and rapid method for isolating lichen photobionts. Symbiosis 51:175–179

    Article  Google Scholar 

  • Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, Thelen JJ, Oliver MJ (2013) The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell Environ 36:1363–1378

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SJ, Thomas MA, Gries C (1997) A new technique for photobiont culturing and manipulation. Lichenologist 29:559–569

    Article  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol (now Funct Plant Biol) 22:131–160

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee G (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. vol 19. Springer, Dordrecht, pp 1–42

    Chapter  Google Scholar 

  • Govindjee Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Orlando (now available from Elsevier)

    Google Scholar 

  • Green TGA, Nash TH III, Lange OL (2008) Physiological ecology of carbon dioxide exchange. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 152–181

    Chapter  Google Scholar 

  • Heber U (2008) Photoprotection of green plants: a mechanism of ultra-fast thermal energy dissipation in desiccated lichens. Planta 228:641–650

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Shuvalov VA (2005) Photochemical reactions of chlorophyll in dehydrated Photosystem II: two chlorophyll forms (680 and 700 nm). Photosynth Res 84:85–91

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Lange OL, Shuvalov VA (2006) Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. J Exp Bot 57:1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Azarkovich M, Shuvalov V (2007) Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. J Exp Bot 58:2745–2759

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Soni V, Strasser RJ (2011) Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Phys Plantarum 142:65–78

    Article  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Hurry V, Oquist G, Huner NPA (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98:565–574

    Article  CAS  PubMed  Google Scholar 

  • Jensen M, Chakir S, Feige GB (1999) Osmotic and atmospheric dehydration effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica 37:393–404

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1964) Etudes cinétiques de la réaction photochimique libérant l’oxygene au cours de la photosynthese. C R Acad Sci 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Joliot A (2003) Excitation energy transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76:241–248

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Berg A, Paul JM, Van Kan PJ, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, New York

    Google Scholar 

  • Komura M, Yamagishi A, Shibata Y, Iwasaki I, Shigeru Itoh (2010) Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. Biophys Biochim Acta 1797:331–338

    Article  Google Scholar 

  • Kopecky J, Azarkovich M, Pfundel EE, Shuvalov VA, Heber U (2005) Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants. Plant Biol 7:156–167

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Zorn M, Turk B, Wornik S, Beckett RR, Batic F (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol 160:167–176

    Article  CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis—the basics. Annu Rev Plant Phys 42:313–349

    Article  CAS  Google Scholar 

  • Krause GH, Somersalo S, Zumbusch E, Weyers B, Laasch H (1990) On the mechanism of photoinhibition in chloroplasts. Relationship between changes in fluorescence and activity of photosystem II. J Plant Physiol 136:472–479

    Article  CAS  Google Scholar 

  • Krüger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modification in structure and function of Photosystem II in camellia leaves. Physiol Plantarum 101:265–287

    Article  Google Scholar 

  • Lange OL (1970) Experimentell-ökologische Untersuchungen and Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora B 158:324–359

    Google Scholar 

  • Lange OL, Tenhunen JD (1981) Moisture content and CO2 exchange of lichens. II. Depression of net photosynthesis in Ramalina maciformisat high water content is caused by increased thallus carbon dioxide diffusion resistance. Oecologia 51:426–429

    Article  Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280

    Article  Google Scholar 

  • Lavergne J, Leci E (1993) Properties of inactive photosystem II centers. Photosynth Res 35:323–343

    Article  CAS  PubMed  Google Scholar 

  • Lavergne J, Trissl HW (1995) Theory of fluorescence induction in Photosystem-II—derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy-transfer between photosynthetic units. Biophys J 68:2474–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lázar D (1999) Chlorophyll a fluorescence induction. BBA—Bioenergetics 1412:1–28

    PubMed  Google Scholar 

  • Lázar D, Schansker G (2009) Models of chlorophyll a fluorescence transients. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico. Advances in photosynthesis and respiration, vol 29. Springer, Dordrecht, pp 85–123

    Chapter  Google Scholar 

  • Lemeille S, Rochaix JD (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46

    Article  CAS  PubMed  Google Scholar 

  • Mamedov M, Govindjee Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Margulis L, Barreno E (2003) Looking at lichens. BioScience 53:776–778

    Article  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Msilini N, Zaghdoudi M, Govindachary S, Lachaal M, Ouerghi Z, Carpentier R (2011) Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor Q A to Q B by iron deficiency. Photosynth Res 107:247–256

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Plant J 63:458–468

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist K, Dahlman L, Johnson A, Nash TH III (2008) The carbon economy of lichens. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 182–215

    Chapter  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll fluorescence: a signature of photosynthesis. In: Govindjee (series ed) Advances in photosynthesis and respiration, vol. 19. Kluwer (now Springer), Dordrecht

  • Pospisil P, Dau H (2000) Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynth Res 65:41–52

    Article  CAS  PubMed  Google Scholar 

  • Robinson HH, Crofts AR (1983) Kinetics of the oxidation–reduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett 153:221–226

    Article  CAS  Google Scholar 

  • Rundel PW (1988) Water relations. In: Galun M (ed) Handbook of lichenology. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Sánchez-Muñoz BA, Aguilar MI, King-Díaz B, Fausto-Rivero J, Lotina-Hennsen B (2012) The sesquiterpenes β-caryophyllene and caryophyllene oxide isolated from Senecio salignus act as phytogrowth and photosynthesis inhibitors. Molecules 17:1437–1447

    Article  PubMed  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-Q(B)-reducing centers in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    Article  CAS  PubMed  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2013) Two Different Mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem 117:11326–11336

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee G (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol 104:236–257

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee G (2012) Chlorophyll a fluorescence induction: understanding the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee G, Strasser BJ, Strasser RJ (1998) Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation. J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  • Strasser RJ (1978) The grouping model of plant photosynthesis. In: Akoyunoglou G (ed) Chloroplast development. Elsevier/North Holland, Amsterdam, pp 513–524

    Google Scholar 

  • Strasser RJ (1981) The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. In: Akoyunoglou G (ed) Photosynthesis III. Structure and molecular organisation of the photosynthetic apparatus, Balaban International Science Services, Philadelphia, pp 727–737

    Google Scholar 

  • Strasser RJ (1986) Monopartite bipartite tripartite and polypartite models in photosynthesis. Photosynth Res 10:255–276

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Govindjee G (1991) The Fo and the O-J–I–P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser RJ, Govindjee G (1992) On the O-J–I–P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis. Kluwer, Dordrecht, pp 39–42

    Google Scholar 

  • Strasser RJ, Greppin H (1981) Primary reactions of photochemistry in higher plants. In: Akoyunoglou G (ed) Photosynthesis III. Structure and molecular organisation of the photosynthetic apparatus. Balaban International Science Services, Philadelphia, pp 717–726

    Google Scholar 

  • Strasser RJ, Stirbet AD (1998) Heterogeneity of Photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). Math Comput Simul 48:3–9

    Article  Google Scholar 

  • Strasser RJ, Strasser BJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M (1998) Activity and heterogeneity of PSII probed in vivo by the chlorophyll a fluorescence raise O-(K)-J-I-P. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer, Dordrecht, pp 4321–4324

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M (2001) Structure function relationship in the photosynthetic apparatus: a biophysical approach. In: Pardha-Saradhi P (ed) Biophysical processes in living systems. Science Publishers, Enfield, pp 271–303

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohantz P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee G (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Thach LB, Shapcott A, Schmidt S, Critchley C (2007) The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynth Res 94:423–436

    Article  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (F m) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    Article  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A noninvasive assay of the plastoquinone pool redox state based on the OJIP transient. Photosynth Res 93:193–203

    Article  PubMed  Google Scholar 

  • Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A (2013) A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 86:373–380

    Article  CAS  PubMed  Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2013) The energy flux theory 35 years later: formulations and applications. Photosynth Res 117:289–320

    Article  CAS  PubMed  Google Scholar 

  • Tuba Z, Csintalan Z, Proctor MCF (1996) Photosynthetic responses of a moss, Tortula ruralis, ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration. New Phytol 133:353–361

    Article  Google Scholar 

  • Veerman J, Vasil’ev S, Paton GD, Ramanauskas J, Bruce D (2007) Photoprotection in the lichen Parmelia sulcata: the origins of desiccation-induced fluorescence quenching. Plant Physiol 145:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velthuys BR (1981) Electron-dependent competition between plastoquinone and inhibitors for binding to Photosystem II. FEBS Lett 126:277–281

    Article  CAS  Google Scholar 

  • Vredenberg WJ, Bulychev AA (2003) Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry 60:87–95

    Article  CAS  PubMed  Google Scholar 

  • Vredenberg W, Kasalicky V, Durchan M, Prasil O (2006) The chlorophyll a fluorescence induction pattern in chloroplasts upon repetitive single turnover excitations: accumulation and function of Q B-nonreducing centers. Biochim Biophys Acta 1757:173–181

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Fukushima Y, Itoh S, Heber U (2012) Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. J Exp Bot 63:3765–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the Spanish Ministry of Science and Innovation (CGL2009-13429-C02-00), Ministerio de Economía y Competitividad (MINECO CGL2012-40058-C02-01/02), FEDER, the Generalitat Valenciana (PROMETEO 2 2013/021 GVA) and the University of Alcalá/CAM (UAH2011/BIO 001). Mr. Daniel Sheerin has reviwed the English version of this paper. We thank all the 3 reviewers of this paper for their valuable comments since they helped us greatly improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Guéra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11120_2015_196_MOESM1_ESM.xlsx

Supplementary Fig. 1 Vt vs. time curves for 100 µM DCMU-treated samples (red squares) and Vt normalized to V J (Vt/V J ) vs. time curves for non-DCMU-treated samples (blue diamonds) of TR1 (upper panel), TR9 (middle panel) and Asterochloris erici (lower panel) cells. Vt time courses were first determined in disc cultures after 30 min in darkness (non-DCMU-treated cells), then 500 µl of 100 µM DCMU were added to each culture disc and they were maintained in darkness for 30 min and measured again after this period (DCMU treated cells). The intercept, slope and R2 value for each line are indicated. Results are the mean of 3–5 different samples for each species (XLSX 23 kb)

11120_2015_196_MOESM2_ESM.xlsx

Supplementary Fig. 2 ΔB/Δt vs. Vt curves and ΔS/Δt vs. Vt for TR1 (blue diamonds), TR9 (red squares) and Asterochloris erici (green triangles) DCMU treated (upper panel) or control (lower panel) cells. Samples and treatments are the same as in complementary Fig. 1 (XLSX 28 kb)

Supplementary material 3 (DOCX 14 kb)

Supplementary material 4 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guéra, A., Gasulla, F. & Barreno, E. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. Photosynth Res 128, 15–33 (2016). https://doi.org/10.1007/s11120-015-0196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0196-8

Keywords

Navigation