Skip to main content

Advertisement

Log in

Photosystem II reaction centre quenching: mechanisms and physiological role

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and ΔpH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced QA in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Cyt b 559 :

Cytochrome b 559

D1:

Photosystem II reaction centre polypeptide

D2:

Photosystem II reaction centre polypeptide

F o :

Minimum yield of chlorophyll fluorescence at open PSII centres in dark-adapted leaves

F m :

Maximum yield of fluorescence at closed PSII reaction centres in dark adapted leaves

F v :

Variable yield of fluorescence in dark adapted leaves

F v/F m :

Maximum PSII photochemical efficiency in dark adapted leaves

LHCII:

The major Chl a/b pigment-protein complex associated with PSII

NPQ:

Non-photochemical quenching

OEC:

Oxygen evolving complex

Pheo:

Pheophytin

PI:

Photoinhibition

PSI:

Photosystem I

PSII:

Photosystem II

PSIIα:

Photosystem α-centres

PSIIβ:

Photosystem β-centres

PsbS:

PSII subunit and gene product of the PsbS gene

PQ:

Plastoquinone

QA :

Primary electron-accepting quinone in PSII reaction centres

QB :

Secondary electron-accepting quinone in PSII reaction centres

qE:

ΔpH-dependent high energy quenching

qo:

Quenching coefficient for basal fluorescence

qP:

Photochemical quenching coefficient

TL:

Thermoluminescence

T M :

Temperature of maximum thermoluminescence emission

V:

Violaxanthin

Z:

Zeaxanthin

References

  • Adams WW, Demmig-Adams B, Rosenstiel TN, Ebbert V (2001) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: Influence of a new phenolic compound. Biochemistry 36:4149–4154

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (1995) Thylakoid protein phosphorilation, state 1- state 2 transitions, and photosystem stoichiometry adjustment: redox control at multiple levels of gene expression. Physiol Plant 93:196–205

    Article  CAS  Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Anderson JM (1992) Cytochrome b6/f complex: dynamic molecular organization, function and acclimation. Photosynth Res 34:341–357

    Article  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Aspinall-O’Dea M, Wentworth M, Pascal A, Robert B, Ruban A, Horton P (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc Natl Acad Sci USA 99:16331–16335

    Article  PubMed  CAS  Google Scholar 

  • Barber J, De Las Rivas J (1993) A functional model for the role of cytochrome-b 559 in the protection against donor and acceptor side photoinhibition. Proc Natl Acad Sci USA 90:10942–10946

    Article  PubMed  CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    Article  PubMed  CAS  Google Scholar 

  • Briantais J-M, Dueruet J-M, Hodges M, Krause GH (1992) The effects of low temperature acclimation and photoinhibitory treatments on Photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. Photosynth Res 31:1–10

    Article  CAS  Google Scholar 

  • Bruce D, Samson G, Carpenter C (1997) The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Biochemistry 36:749–755

    Article  PubMed  CAS  Google Scholar 

  • Bukhov NG, Heber U, Wiese C, Shuvalov VA (2001) Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Planta 212:749–758

    Article  PubMed  CAS  Google Scholar 

  • Crouchman S, Ruban A, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Cser K, Vass I (2007) Radiative and non-radiative charge recombination pathways in photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochim Biophys Acta 1767:233–243

    Article  PubMed  CAS  Google Scholar 

  • Delphin E, Duval JC, Etienne AL, Kirilovsky D (1996) State transitions or ΔpH-dependent quenching of photosystem II fluorescence in red algae. Biochemistry 35:9435–9445

    Article  PubMed  CAS  Google Scholar 

  • Delrieu MJ (1998) Regulation of thermal dissipation of absorbed excitation energy and violaxanthin deepoxidation in the thylakoids of Lactuca sativa. Photoprotective mechanism of a population of photosystem II centers. Biochim Biophys Acta 1363:157–173

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WWIII, Barker DH, Logan BA, Bowling RD, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW, Ebber V, Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) Advances in photosynthesis. The photochemistry of carotenoids, vol 8. Kluwer Academic Publishers, Dordrecht, pp 245–269

    Chapter  Google Scholar 

  • Devault D, Govindjee (1990) Photosynthetic glow peaks and their relationship with the free-energy changes. Photosynth Res 24:175–181

    CAS  Google Scholar 

  • Doege M, Ohmann E, Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynth Res 63:159–170

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Fujita Y, Ley A, Mauzerall D (1986) Evidence for cyclic electron flow around photosystem II in Chlorella pyrenoidosa. Plant Physiol 81:310–312

    PubMed  CAS  Google Scholar 

  • Field TS, Nedbal L, Ort DR (1998) Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116:1209–1218

    Article  Google Scholar 

  • Finazzi G, Johnson GN, Dallosto L, Joliot P, Wollman F-A, Bassi R (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc Natl Acad Sci USA 101:12375–12380

    Article  PubMed  CAS  Google Scholar 

  • Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410

    Article  PubMed  CAS  Google Scholar 

  • Fufezan C, Gross CM, Sjödin M, Rutherford AW, Krieger-Liszkay A, Kirilovsky D (2007) Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. J Biol Chem 282:12492–12502

    Article  PubMed  CAS  Google Scholar 

  • Giersch C, Krause GH (1991) A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered photosystem II reaction centers. Photosynth Res 30:115–121

    Article  CAS  Google Scholar 

  • Gilbert M, Skotnica J, Weingart I, Wilhelm C (2004) Effects of UV irradiation on barley and tomato leaves: thermoluminescence as a method to screen the impact of UV radiation on crop plants. Funct Plant Biol 31:825–845

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    Article  CAS  Google Scholar 

  • Grasses T, Pesaresi P, Schiavon F, Varotto C, Salamini F, Jahns P, Leister D (2002) The role of ΔpH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol Biochem 40:41–49

    Article  CAS  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  PubMed  CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19–39

    Article  CAS  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental change: PSII excitation pressure and redox signalling. Physiol Plant 98:358–364

    Article  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hurry V, Anderson JM, Chow WS, Osmond CB (1997) Accumulation of zeaxanthin in abscisic acid-deficient mutants of Arabidopsis does not affect chlorophyll fluorescence quenching or sensitivity to photoinhibition in vivo. Plant Physiol 113:639–648

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardeström P, Huner NPA, Öquist G (2001) Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta 213:575–585

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Simidjiev I, Huner NPA, Öquist G (2002) Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence. Planta 215:457–465

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane P, Hurry V, Krol M, Sveshnikov D, Huner NPA, Öquist G (2003) Low-temperature modulation of the redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy. Physiol Plant 119:376–383

    Article  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Krol M, Gray GR, Balseris A, Savitch LV, Öquist G, Huner NPA (2006) Acclimation to temperature and irradiance modulates PS II charge recombination. FEBS Lett 580:2797–2802

    Article  PubMed  CAS  Google Scholar 

  • Ishikita H, Knapp E-W (2005) Control of quinone redox potentials in photosystem II: electron transfer and photoprotection. J Am Chem Soc 127:14714–14720

    Article  PubMed  CAS  Google Scholar 

  • Janda T, Szalai G, Paldi E (2000) Thermoluminescence investigation of low temperature stress in maize. Photosynthetica 38:635–639

    Article  Google Scholar 

  • Johnson GN, Rutherford AW, Krieger A (1995) A change in the midpoint potential of the quinone Qa in photosystem-II associated with photoactivation of oxygen evolution. Biochim Biophys Acta 1229:202–207

    Article  Google Scholar 

  • Jursinic P, Govindgee (1982) Effects of hydroxylamine and silicomolybdate on the decay in delayed light emission in the 6–100 microsecond range after a single 10 ns flash in pea thylakoids. Photosynth Res 3:161–177

    Article  CAS  Google Scholar 

  • Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Masojidek J (1998) The effect of photosystem II inhibitors DCMU and BNT on the high-light induced D1 turnover in two cyanobacterial strains Synechocystis PCC 6803 and Synechococcus PCC 7942. Photosynth Res 57:193–202

    Article  CAS  Google Scholar 

  • Kopecky J, Azarkovich M, Pfundel PP, Shuvalov AV, Heber U (2005) Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants. Plant Biol 7:156–167

    Article  PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photoinhibition. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Jahns P (2003) Pulse amplitude modulated chlorophyll fluorometry and its application in plant science. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration. Light harvesting antennae in photosynthesis, vol XIII. Kluwer Academic Publishers, Dordrecht, pp 373–399

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krieger A, Rutherford AW (1997) Comparison of chloride-depleted and calcium-depleted PSII: the midpoint potential of QA and susceptibility to photodamage. Biochim Biophys Acta 1319:91–98

    Article  CAS  Google Scholar 

  • Krieger A, Moya I, Weis E (1992) Energy-dependent quenching of chlorophyll a fluorescence – effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem-II preparations. Biochim Biophys Acta 1102:167–176

    Article  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron-acceptor, Qa, in Photosystem-II. Biochim Biophys Acta 1229:193–201

    Article  Google Scholar 

  • Krieger-Liszkay A, Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem-II. Relevance to photodamage and phytotoxicity. Biochemistry 37:17339–17344

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Zheleva D, Barber J (1997) Stabilization of photosystem two dimers by phosphorylation: implication for the regulation of the turnover of D1 protein. FEBS Lett 408:276–280

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J, Trissl HW (1995) Theory of fluorescence induction in Photosystem II: derivation of analytical expressions in a model including exciton–radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492

    PubMed  CAS  Google Scholar 

  • Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta 212:332–342

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Björkman O, Shin C, Grossman A, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Napiwotzki A, Eckert H-J, Eichler HJ, Renger G (1993) Studies on the recombination kinetics of the radical pair P680+Pheo- in isolated PSII core complexes from spinach. Biochim Biophys Acta 1142:129–138

    Article  CAS  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615

    Article  PubMed  CAS  Google Scholar 

  • Mäenpää P, Miranda T, Tyystjarvi E, Tyystjarvi T, Govindjee, Ducruet JM, Etienne AL, Kirilovsky D (1995) A mutation in the D-loop of D1 modifies the stability of the S2QA and S2QB states in photosystem-II. Plant Physiol 107:187–197

    PubMed  Google Scholar 

  • Matsubara S, Chow W-S (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci USA 101:18234–18239

    Article  PubMed  CAS  Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Minagawa J, Narusaka Y, Inoue Y, Satoh K (1999) Electron transfer between QA and QB in photosystem II is thermodynamically perturbed in phototolerant mutants of Synechocystis sp. PCC 6803. Biochemistry 38:770–775

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Yokota A (2001) Cyclic flow of electrons within PSII in thylakoid membranes. Plant Cell Physiol 42:508–515

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Yonekura K, Kobayashi Y, Yokota A (2002) Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol 43:951–957

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    Article  PubMed  CAS  Google Scholar 

  • Ohad I, Hirschberg J (1992) Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell 4:273–282

    Article  PubMed  CAS  Google Scholar 

  • Olaizola M, Yamamoto HY (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30:606–612

    Article  CAS  Google Scholar 

  • Olaizola M, Laroche J, Kolber Z, Falkowski PG (1994) Nonphotochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357–370

    Article  CAS  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  CAS  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  PubMed  CAS  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Osmond B (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98

    CAS  Google Scholar 

  • Peterson RB, Havir EA (2001) Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene. Planta 214:142–152

    PubMed  CAS  Google Scholar 

  • Peterson RB, Havir EA (2003) Contrasting modes of regulation of PSII light utilization with changing irradiance in normal and PsbS mutant leaves of Arabidopsis thaliana. Photosynth Res 75:57–70

    Article  PubMed  CAS  Google Scholar 

  • Pocock T, Sane PV, Falk S, Huner NPA (2007) Excitation pressure regulates the activation energy for recombination events in the photosystem II reaction centres of Chlamydomonas reinhrdtii. Biochem Cell Biol 85:721–729

    Article  PubMed  CAS  Google Scholar 

  • Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410

    Article  CAS  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J-D (2004) Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16:1650–1660

    Article  PubMed  CAS  Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Hüner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis thaliana during steady state photosynthesis. Plant Physiol 142:574–585

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Pascal AA, Robert B, Horton P (2002) Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. J Biol Chem 277:7785–7789

    Article  PubMed  CAS  Google Scholar 

  • Sane PV, Ivanov AG, Sveshnikov D, Huner NPA, Öquist G (2002) A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. J Biol Chem 277:32739–32745

    Article  PubMed  CAS  Google Scholar 

  • Sane PV, Ivanov AG, Hurry V, Huner NPA, Öquist G (2003) Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis. Plant Physiol 132:2144–2151

    Article  PubMed  CAS  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405

    CAS  PubMed  Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293

    Article  CAS  Google Scholar 

  • Skotnica J, Matouskova M, Naus J, Lazar D, Dvorak L (2000) Thermoluminescence and fluorescence study of changes in photosystem II photochemistry in desiccating barley leaves. Photosynth Res 65:29–40

    Article  PubMed  CAS  Google Scholar 

  • Stewart DH, Cua A, Chisholm DA, Diner BA, Bocian DF, Brudvig GW (1998) Identification of histidine 118 in the D1 polypeptide of photosystem II as the axial ligand to chlorophyll Z. Biochemistry 37:10040–10046

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Streb P, Josse E-M, Gallouet E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    Article  CAS  Google Scholar 

  • Sun Z-L, Lee H-Y, Matsubara S, Hope AB, Pogson BJ, Hong Y-N, Chow WS (2006) Photoprotection of residual functional photosystem II units that survive illumination in the absence of repair, and their critical role in subsequent recovery. Physiol Plant 128:415–424

    Article  CAS  Google Scholar 

  • Sveshnikov D, Ensminger I, Ivanov AG, Campbell D, Lloyd J, Funk C, Huner NPA, Öquist G (2006) Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiol 26:325–336

    Article  PubMed  CAS  Google Scholar 

  • Swiatek M et al (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13:1347–1368

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Hansson O, Mathis P, Satoh K (1987) Primary radical pair in the photosystem II reaction center. Biochim Biophys Acta 893:49–59

    Article  CAS  Google Scholar 

  • Telfer A, Rivas JD, Barber J (1991) β-carotene within the isolated photosystem-II reaction center – photooxidation and irreversible bleaching of this chromophore by oxidized P680. Biochim Biophys Acta 1060:106–114

    Article  CAS  Google Scholar 

  • Thompson LK, Brudvig GW (1988) Cytochrome b 559 may function to protect photosystem II from photoinhibition. Biochemistry 27:6653–6658

    Article  PubMed  CAS  Google Scholar 

  • Tschiersch H, Ohmann E, Doege M (2002) Modification of the thylakoid structure of Euglena gracilis by norflurazon-treatment: consequences for fluorescence quenching. Environ Exp Bot 47:259–270

    Article  CAS  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Vavilin DV, Vermaas WFJ (2000) Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in photosystem II in vivo. Biochemistry 39:14831–14838

    Article  PubMed  CAS  Google Scholar 

  • Vavilin DV, Tyystjarvi E, Aro EM (1998) Model for the fluorescence induction curve of photoinhibited thylakoids. Biophys J 75:503–512

    PubMed  CAS  Google Scholar 

  • Walters RG, Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PSII fluorescence in barley leaves. Photosynth Res 36:119–139

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894:198–207

    Article  CAS  Google Scholar 

  • Wilson A, Ajlani G, VerbavatzJ-M Vass I, Kerfeld C, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC, Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphtoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851:6–22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science and Engineering Research Council of Canada to NPAH, the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) to GÖ and NPAH, the Swedish Research Council to GÖ and the Swedish Council for Forestry and Agricultural Research to VH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman P. A. Huner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.G., Sane, P.V., Hurry, V. et al. Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98, 565–574 (2008). https://doi.org/10.1007/s11120-008-9365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9365-3

Keywords

Navigation