Skip to main content

Advertisement

Log in

Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Thirteen putative carbonic anhydrase (CA) genes have been identified in the marine multipolar centric diatom, Thalassiosira pseudonana, and two of these CAs have been localized previously. The first, an alpha CA (TpαCA1), was localized in the chloroplast stroma; the second, a zeta-type CA (TpζCA1), was localized to the periplasmic space. In the present study, cloning and localization of the remaining CAs were carried out. TpγCA2, TpγCA3, TpγCA4, TpγCA5, TpδCA1, TpδCA2, TpδCA3, and TpζCA1 were responsive to CO2 availability at the transcriptional level, being significantly reduced in cells grown at 0.4 % CO2, whereas TpαCA1, TpαCA2, TpαCA3, TpγCA1, and TpδCA4 transcript levels were constitutive with respect to CO2 concentration. Full-length cDNAs for TpγCA1, TpγCA2, TpγCA3, TpγCA4, TpδCA1, and TpδCA2 were isolated and fused with the enhanced-green fluorescent gene at their 3′ termini. These GFP-fusion constructs were transformed into T. pseudonana, and the resulting GFP fusion products were localized using fluorescence microscopy. The δ-type TpδCA1 was localized on the periphery of the cell, strongly suggesting localization to the periplasmic space or the frustule. The δ-type TpδCA3 and the γ-type TpγCA2 were, respectively, localized in a periplastidal compartment and the cytosol. The δ-type TpδCA2, and the γ-types TpγCA1, 3, and 4 were localized in the mitochondria. The distribution of CAs in T. pseudonana contrasts notably with that of the raphid pennate diatom P. tricornutum, with likely consequences for CCM function including modes of CO2 acquisition, regions in which DIC is accumulated, and needs for minimizing CO2 leakage from the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RubisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

CA:

Carbonic anhydrase

CER:

Chloroplast endoplasmic reticulum

PPC:

Periplastidal compartment

BLS:

Blob-like structure

CE:

Chloroplast envelope

CCM:

CO2 concentrating mechanism

DIC:

Dissolved-inorganic carbon

EZA:

Ethoxyzolamide

AZA:

Acetazolamide

References

  • Alber BE, Ferry JG (1994) A carbonic anhydrase from archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  CAS  PubMed  Google Scholar 

  • Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  CAS  PubMed  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924

    Article  CAS  Google Scholar 

  • Cox EH, McLendon GL, Morel FMM, Lane TW, Prince RC, Pickering IJ, George GN (2000) The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 39:12128–12130

    Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH (2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876–1893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S (1990) Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:9779–9783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuzawa H, Fujiwara S, Tachiki A, Miyachi S (1990) Nucleotide sequences of two genes CAH1 and CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. Nucleic Acids Res 18:6441–6442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89:4437–4441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99

    Article  Google Scholar 

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    Article  CAS  PubMed  Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies. Assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Matsuda Y (2005) Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Can J Bot 83:909–916

    Article  CAS  Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J Phycol 16:28–35

    Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5:50–77

    Article  CAS  PubMed  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Nat Acad Sci USA 108:3830–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase in two marine diatoms and investigation of its role. Plant Physiol 162:1142–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290

    Article  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Kikutani S, Tanaka R, Yamazaki Y, Hara S, Hisabori T, Kroth PG, Matsuda Y (2012) Redox regulation of carbonic anhydrases via thioredoxin in the chloroplast of the marine diatom Phaeodactylum tricornutum. J Biol Chem 287:20689–20700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  CAS  PubMed  Google Scholar 

  • Kitao Y, Matsuda Y (2009) Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 419:681–688

    Article  CAS  PubMed  Google Scholar 

  • Klodmann J, Sunderhaus S, Nimtz M, Jänsch L, Braun HP (2010) Internal architecture of mitochondrial complex I from Arabidopsis thaliana. Plant Cell 22:797–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  CAS  PubMed  Google Scholar 

  • Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Article  PubMed Central  PubMed  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from marine diatom. Nature 435:42

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee RBY, Smith JC, Rickaby REM (2013) Cloning, expression and characterization of the δ-carbonic anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J Phycol 49:170–177

    Article  CAS  Google Scholar 

  • Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Villarreal F, Miras I, Navaza A, Haous A, González-Lebrero RM, Kaufman SB, Zabaleta E (2009) Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Lett 583:3425–3430

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant Cell Environ 24:611–620

    Article  CAS  Google Scholar 

  • Matsuda Y, Nakajima K, Tachibana M (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109:191–203

    Article  CAS  PubMed  Google Scholar 

  • McGinn PJ, Morel FMM (2008a) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGinn PJ, Morel FMM (2008b) Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 133:78–91

    Article  CAS  PubMed  Google Scholar 

  • Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653

    Article  CAS  PubMed  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed Central  PubMed  Google Scholar 

  • Moroney JV, Husic H, Tolbert N (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79:177–183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153

    Article  CAS  Google Scholar 

  • Moroney JV, Ma Y, Frey ED, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109:133–149

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci USA 110(5):1767–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parisi G, Perales M, Fornasari MS, Colaneri A, González-Schain N, Gómez-Casati D, Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–207

    Article  CAS  PubMed  Google Scholar 

  • Park H, Song B, Morel FMM (2007) Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ Microbiol 9(2):403–413

    Article  CAS  PubMed  Google Scholar 

  • Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460

    Article  PubMed Central  PubMed  Google Scholar 

  • Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun HP (2005) Disruption of a nuclear gene encording a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I+III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065

    Article  Google Scholar 

  • Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype: evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raven JA (1997a) CO2-concentrating mechanisms: A direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154

    Article  CAS  Google Scholar 

  • Raven JA (1997b) The role of marine biota in the evolution of terrestrial biota: gases and genes atmospheric composition and evolution of terrestrial biota. Biogeochemistry 39:139–164

    Article  Google Scholar 

  • Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ 24:261–265

    Article  CAS  Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315

    Article  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  CAS  PubMed  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850

    Article  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Satoh D, Hiraoka Y, Colman B, Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiol 126:1459–1470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog. doi:10.1371/journal.ppat.1002392

    PubMed Central  PubMed  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  CAS  PubMed  Google Scholar 

  • So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65:1–12

    Article  Google Scholar 

  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221

    Article  CAS  PubMed  Google Scholar 

  • Tréguer P, Nelson DM, Bennekom AJV, DeMaster DJ, Leynaert A, Quéduiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  PubMed  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  CAS  PubMed  Google Scholar 

  • Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120:757–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122

    Article  CAS  PubMed  Google Scholar 

  • Werner D (1977) Introduction with a note on taxonomy. In: Werner D (ed) The Diatoms. Blackwell Scientific Publications, Oxford, pp 1–17

  • Xu Y, Feng L, Jeffrey PD, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2-dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468

    Article  CAS  PubMed  Google Scholar 

  • Ynalvez RA, Xiao Y, Ward AS, Cunnusamy K, Moroney JV (2008) Identification and characterization of two closely related beta carbonic anhydrases from Chlamydomonas reinhardtii. Physiol Plant 133:15–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Nobuko Higashiuchi for her technical assistance and Ms. Miyabi Inoue for her skillful secretarial assistance. This work was supported by the Grant-in-Aid for Scientific Research B (Grant No. 24310015 to Y. M.), by the Grant-in-Aid for Challenging Exploratory Research (Grant No. 24651119 to Y. M.) from Japan Society for the Promotion of Science (JSPS), by MEXT-Supported Program for the Strategic Research Foundation for the Advancement of Environmental Protection Technology and for Development of Intelligent Self-Organized Biomaterials, and by the US National Science Foundation (EF 1041034 and MCB 1129326 to B.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsuda.

Additional information

M. Samukawa and S. Chen have contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samukawa, M., Shen, C., Hopkinson, B.M. et al. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana . Photosynth Res 121, 235–249 (2014). https://doi.org/10.1007/s11120-014-9967-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9967-x

Keywords

Navigation