Skip to main content
Log in

Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASAFAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the “ASAFAP”-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    PubMed  CAS  Google Scholar 

  • Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O et al (2002) In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 115:4061–4069

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al (2004) The genome of the Diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  PubMed  CAS  Google Scholar 

  • Bodył A (2004) Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis. Plant Biol 6:513–518

    Article  PubMed  CAS  Google Scholar 

  • Bryant N, Stevens T (1998) Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62:230–247

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryotic family tree. J Eukary Microbiol 46:347–366

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane hereditiy and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358:109–134

    Article  PubMed  CAS  Google Scholar 

  • Chaal BK, Green BR (2005) Protein import pathways in `complex’ chloroplasts derived from secondary endosymbiosis involving a red algal ancestor. Plant Mol Biol 57:333–342

    Article  PubMed  CAS  Google Scholar 

  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti M (1997) Identification of peptide and protein ligands for the caveolinscaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  PubMed  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol V48:236–244

    Article  Google Scholar 

  • Duvernay MT, Zhou F, Wu G (2004) A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. J Biol Chem 279:30741–30750

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1979) The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35:253–266

    PubMed  CAS  Google Scholar 

  • Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99

    Google Scholar 

  • Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG et al (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol V62:674–681

    Article  CAS  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ et al (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    Article  PubMed  CAS  Google Scholar 

  • Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J System Evol Microbiol 55:487–496

    Article  CAS  Google Scholar 

  • Heazlewood JL, Tonti-Filippini J, Verboom RE, Millar AH (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol 139:598–609

    Article  PubMed  CAS  Google Scholar 

  • Ishida K (2005) Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids. J Plant Res 118:237–245

    Article  PubMed  Google Scholar 

  • Ishida K, Cavalier-Smith T, Green BR (2000) Endomembrane structure and the chloroplast protein targeting pathway in Heterosigma akashiwo (Raphidophyceae, Chromista). J Phycol 36:1135–1144

    Article  CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Google Scholar 

  • Kilian O, Kroth PG (2003) Evolution of protein targeting into “complex” plastids: the “secretory transport hypothesis”. Plant Biol 5:350–358

    Article  CAS  Google Scholar 

  • Kilian O, Kroth PG (2004) Presequence acquisition during secondary endocytobiosis and the possible role of introns. J Mol Evol 58:712–721

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG (2007) Genetic transformation; a tool to study protein targeting in diatoms, chap. 17. In: Methods in molecular biology, 2nd edn., Totowa, NJ, USA: Humana Press

  • Kroth PG, Strotmann H (1999) Diatom plastids: secondary endocytobiosis, plastid genome and protein import. Physiol Plant 107:136–141

    Article  CAS  Google Scholar 

  • Kroth PG, Schroers Y, Kilian O (2005) The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Curr Genet 48:389–400

    Article  PubMed  CAS  Google Scholar 

  • Lang M (2000) Untersuchungen zum Transport kernkodierter Plastiden-Proteine in Kieselalgen. Ph.D. thesis, Heinrich-Heine-Universität Düsseldorf, URL http://diss.ub.uni-duesseldorf.de/home/etexte/diss/file?dissid=37

  • Lang M, Apt KE, Kroth PG (1998) Protein transport into “complex” diatom plastids utilizes two different targeting signals. J Biol Chem 273:30973–30978

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY et al (2005) CDD: a conserved domain database for protein classification. Nucl Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M et al (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Plastids and protein targeting. J Eukaryot Microbiol 46:339–346

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:1–9

    Article  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Small I (2006) Recent surprises in protein targeting to mitochondria and plastids. Curr Opin Plant Biol 9:610–615

    Article  PubMed  CAS  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed  Google Scholar 

  • Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  PubMed  CAS  Google Scholar 

  • Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116:2867–2874

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6:122–130

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997a) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997b) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  PubMed  CAS  Google Scholar 

  • Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, et al. (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genom 277(4):427–439. PMID: 17252281

    Article  CAS  Google Scholar 

  • Pancic PG, Strotmann H (1993) Structure of the nuclear encoded γ subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett 320:61–66

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G et al (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    Article  PubMed  CAS  Google Scholar 

  • Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM et al (2007) Der1-mediated pre-protein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24(4):918–928. PMID: 17244602

    Article  PubMed  CAS  Google Scholar 

  • Starr RC, Zeikus JA (1993) UTEX: the culture collection of algae at the University of Texas at Austin, 1993 list of cultures. J Phycol 29:1–106

    Article  Google Scholar 

  • Steiner JM, Löffelhardt W (2005) Protein translocation into and within cyanelles. Mol Membr Biol 22:123–132

    PubMed  CAS  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2005) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Google Scholar 

  • von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Article  Google Scholar 

  • Waller RF, McFadden GI (2004) The Apicoplast, chap. 11. Caister Academic Press, Wymondham, UK, pp 291–338

    Google Scholar 

  • Wastl J, Maier UG (2000) Transport of Proteins into cryptomonads complex plastids. J Biol Chem 275:23194–23198

    Article  PubMed  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Ballert for help with the transformation and cultivation of Phaeodactylum tricornutum. This study was supported by the University of Konstanz and grants of the Deutsche Forschungsgemeinschaft (Project KR 1661/3) and the European community (MARGENES, project QLRT-2001-01226) to PGK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kroth.

Additional information

A. Gruber and S. Vugrinec contributed equally to this work.

Electronic supplementary material

Below is the electronic supplementary material.

11103_2007_9171_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, A., Vugrinec, S., Hempel, F. et al. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64, 519–530 (2007). https://doi.org/10.1007/s11103-007-9171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9171-x

Keywords

Navigation