Skip to main content
Log in

Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It is believed that intracellular carbonic anhydrases (CAs) are essential components of carbon concentrating mechanisms in microalgae. In this study, putative CA-encoding genes were identified in the genome sequences of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Subsequently, the subcellular localizations of the encoded proteins were determined. Nine and thirteen CA sequences were found in the genomes of P. tricornutum and T. pseudonana, respectively. Two of the β-CA genes in P. tricornutum corresponded to ptca1 and ptca2 identified previously. Immunostaining transmission electron microscopy of a PtCA1:YFP fusion expressed in the cells of P. tricornutum clearly showed the localization of PtCA1 within the central part of the pyrenoid structure in the chloroplast. Besides these two β-CA genes, P. tricornutum likely contains five α- and two γ-CA genes, whereas T. pseudonana has three α-, five γ-, four δ-, and one ζ-CA genes. Semi-quantitative reverse transcription PCR performed on mRNA from the two diatoms grown in changing light and CO2 conditions revealed that levels of six putative α- and γ-CA mRNAs in P. tricornutum did not change between cells grown in air-level CO2 and 5% CO2. However, mRNA levels of one putative α-CA gene, CA-VII in P. tricornutum, were reduced in the dark compared to that in the light. In T. pseudonana, mRNA accumulation levels of putative α-CA (CA-1), ζ-CA (CA-3) and δ-CA (CA-7) were analyzed and all levels found to be significantly reduced when cells were grown in 0.16% CO2. Intercellular localizations of eight putative CAs were analyzed by expressing GFP fusion in P. tricornutum and T. pseudonana. In P. tricornutum, CA-I and II localized in the periplastidial compartment, CA-III, VI, VII were found in the chloroplast endoplasmic reticulum, and CA-VIII was localized in the mitochondria. On the other hand, T. pseudonana CA-1 localized in the stroma and CA-3 was found in the periplasm. These results suggest that CAs are constitutively present in the four chloroplastic membrane systems in P. tricornutum and that CO2 responsive CAs occur in the pyrenoid of P. tricornutum, and in the stroma and periplasm of T. pseudonana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

CA:

Carbonic anhydrase

CER:

Chloroplast endoplasmic reticulum

PPC:

Periplastidial compartment

BLS:

Blob-like structure

CE:

Chloroplast envelope

CCM:

Inorganic carbon concentrating mechanism

TEM:

Transmission electron microscopy

References

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Price GD (1989) Carbonic anhydrase activity associated with the cyanobacterium Synechococcus PCC7942. Plant Physiol 89:51–60

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Env 18:919–924

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Karlsson J, Ramazanov Z, Gardeström P, Samuelsson G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 93:12031–12034

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Villand P, Gardeström P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 116:637–641

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek VV (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89:4437–4441

    Article  PubMed  CAS  Google Scholar 

  • Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99

    Article  Google Scholar 

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681

    Article  PubMed  CAS  Google Scholar 

  • Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422

    Article  PubMed  CAS  Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530

    Article  PubMed  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Matsuda Y (2005) Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Can J Bot 83:909–916

    Article  CAS  Google Scholar 

  • Harada H, Nakatsuma D, Ishida M, Matsuda Y (2005) Regulation of the expression of intracellular β-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum. Plant Physiol 139:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J Phycol 16:28–35

    Google Scholar 

  • Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5:50–77

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth ES, Colbeck J (1976) The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar Biol 38:189–199

    Article  CAS  Google Scholar 

  • Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290

    Article  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Matsuda Y (2009) Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 419:681–688

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Article  PubMed  Google Scholar 

  • Kuchitsu K, Tsuzuki M, Miyachi S (1988) Characterization of the pyrenoid isolated from unicellular green alga Chlamydomonas reinhardtii: particulate form of RuBisCO protein. Protoplasma 144:17–24

    Article  CAS  Google Scholar 

  • Kuchitsu K, Tsuzuki M, Miyachi S (1991) Polypeptide composition and enzyme activities of the pyrenoid and its regulation by CO2 concentration in unicellular green algae. Can J Bot 69:1062–1069

    Article  CAS  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631

    Article  PubMed  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from marine diatom. Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lichtlé C, McKay RML (1992) Immunogold localization of photosystem I and photosystem II light-harvesting complexes in cryptomonad thylakoids. Biol Cell 74:187–194

    Article  Google Scholar 

  • Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant Cell Env 24:611–620

    Article  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008a) Expression and Inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008b) Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 133:78–91

    Article  PubMed  CAS  Google Scholar 

  • Mckay RML, Gibbs SP, Vaughn KC (1991) Rubisco activase is present in the pyrenoid of green algae. Protoplasma 162:38–45

    Article  CAS  Google Scholar 

  • Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV (2004) Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 135:173–182

    Article  PubMed  CAS  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed  Google Scholar 

  • Moroney JV, Chen ZY (1998) The role of the chloroplast in inorganic carbon uptake by eukaryotic algae. Can J Bot 76:1025–1034

    CAS  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Env 24:141–153

    Article  CAS  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  • Nassoury N, Fritz L, Morse D (2001) Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell 13:923–934

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. In: Proceedings of the sixth international conference on intelligent systems for molecular biology (ISMB 6). AAAI Press, Menlo Park, California, pp 122–130

  • Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460

    Article  PubMed  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J Phycol 42:1059–1065

    Article  Google Scholar 

  • Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype: evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    Article  PubMed  CAS  Google Scholar 

  • Pronina NA, Semenenko VE (1984) Localization of membrane bound and soluble forms of carbonic anhydrase in the Chlorella cell. Fiziol Rast (Moscow) 31:241–251

    CAS  Google Scholar 

  • Raven JA (1997) CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Env 20:147–154

    Article  CAS  Google Scholar 

  • Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Env 24:261–265

    Article  CAS  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  PubMed  CAS  Google Scholar 

  • Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850

    Article  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Satoh D, Hiraoka Y, Colman B, Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiol 126:1459–1470

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  PubMed  CAS  Google Scholar 

  • So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Nakatsuma D, Harada H, Ishida M, Matsuda Y (2005) Localization of soluble β-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol 138:207–217

    Article  PubMed  CAS  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Feng L, Jeffrey PD, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468

    Article  PubMed  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Nobuko Higashiuchi and Ms. Megumi Fujii for their technical assistance and Ms. Miyabi Inoue for her skilful secretarial assistance. This research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Kwansei Gakuin University, Research Center for Environmental Bioscience), and by Steel Industry Foundation for the Advancement of Environmental Protection Technology (to Y. M.), and by funding from the National Science Foundation (NSF-MCB-1024913, NSF OCE-0727997, and NSF OCE-0722374) to AEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsuda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, M., Allen, A.E., Kikutani, S. et al. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana . Photosynth Res 109, 205–221 (2011). https://doi.org/10.1007/s11120-011-9634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9634-4

Keywords

Navigation