Skip to main content
Log in

Protein Targeting into the Complex Plastid of Cryptophytes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Apt KE, Kroth-Pancic PG, Grossmann AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    PubMed  CAS  Google Scholar 

  • Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O, Wetherbee R, Grossman AR, Kroth PG (2002) Characterization of diatom multipartite plastid targeting signals. J Cell Sci 115:4061–4069

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  PubMed  CAS  Google Scholar 

  • CavalierSmith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryotic family tree. J Eukary Microbiol 46:347–366

    CAS  Google Scholar 

  • Cavalier-Smith T, (2000) Membrane hereditiy and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 2002(6):612–619, 2002

    Article  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc London B 358:109–134

    Article  CAS  Google Scholar 

  • Chaal BK, Green BR (2005) Protein import pathways in ‘complex’ chloroplasts derived from secondary endosymbiosis involving a red algal ancestor. Plant Mol Biol 57:333–342

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary endosymbiosis. Plant Syst Evol 11 (Suppl):53–86

    CAS  Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M. (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113:3969–3977

    PubMed  CAS  Google Scholar 

  • Douglas SE, Penny S (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1979) The route of entry of cytoplasmatically synthesized into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35:235–266

    Google Scholar 

  • Gilson PR, McFadden GI (2002) Jam packed genomes—a preliminary, comparative analysis of nucleomorphs. Genetica 115:13–28

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Cavalier-Smith T, Green BR (2000) Endomembrane structure and the chloroplast protein targeting pathway in Heterosigma akashiwo (Raphidophyceae, Chromista) J. Phycol 36:1135–1144

    Article  CAS  Google Scholar 

  • Kilian O, Kroth PG (2004) Presequence acquisition during secondary endocytobiosis and the possible role of introns. J Mol Evol 58:712–721

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG. (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  PubMed  CAS  Google Scholar 

  • Kroth PG, Strotmann H (1999) Diatom plastids: secondary endocytobiosis, plastid genome and protein import. Phys Plant 107:136–141

    Article  CAS  Google Scholar 

  • Lang M, Apt KE, Kroth PG (1998) Protein transport into “complex” diatom plastids utilizes two different targeting signals. J Biol Chem 273:30973 – 30978

    Article  PubMed  CAS  Google Scholar 

  • Maier UG, Douglas S, Cavalier-Smith T (2000) The nucleomorph genomes of cryptophytes and chlorarchniophytes. Protist 151:103–109

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Herrmann RH (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Article  Google Scholar 

  • McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:514–516

    Article  Google Scholar 

  • Meeuse BJD, Andries M, Wood JA, Wood M (1960) Floridean starch. J Exp Bot 11:129–140

    CAS  Google Scholar 

  • Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci 116:2867–2874

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Prechtl J, Maier UG (2002) Zoology meets Botany: establishing intracellular organelles by endosymbiosis. Zoology 104:284–289

    Article  Google Scholar 

  • Ralph SA, Foth BJ, Hall N, McFadden GI (2004) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21:2183–94

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Lamppa GK (2003) Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal. J Biol Chem 278:39497–39502

    Article  PubMed  CAS  Google Scholar 

  • Slavikova S, Vacula R, Fang Z, Ehara T, Osafune T, Schwartzbach SD (2005) Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena. J Cell Sci 118:1651–61

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts [Review]. Nature Rev Mol Cell Biol 5:198–208

    Article  CAS  Google Scholar 

  • Steiner JM, Löffelhardt W (2002) Protein import into cyanelles. Trends Plant Sci 7:72–77

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Berghofer J, Yusa F, Pompe JA, Klosgen RB, Loffelhardt W. (2005) Conservative sorting in a primitive plastid. The cyanelle of Cyanophora paradoxa. FEBS J 272:987–98

    PubMed  CAS  Google Scholar 

  • Stoebe B, Maier UG (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219:123–130

    Article  PubMed  Google Scholar 

  • Sulli C, Fang Z, Muchhal U, Schwartzbach SD (1999) Topology of Euglena Chloroplast protein precursors within endoplasmic reticulum to golgi to chloroplast transport vesicles. J Biol Chem 274:457–463

    Article  PubMed  CAS  Google Scholar 

  • Van Dooren GG, Waller RF, Joiner KA, Roos DS, McFadden GI (2000) Traffic jams: protein transport in Plasmodium falciparum. Parasitol Today 16:421–427

    Article  PubMed  Google Scholar 

  • Van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541:34–53

    Article  PubMed  Google Scholar 

  • Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc London 268:1417–1422

    Article  CAS  Google Scholar 

  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI. (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95:12352–12357

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Wastl J, Maier UG (2000) Transport of proteins into cryptomonads complex plastids. J Biol Chem 275:23194–23198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Doris Ballert for help in diatom transfromation. Additionally, we thank Prof. E. Neuhaus (Kaiserslautern, Germany) and Steven Ball (Villeneuve d’Ascq, France) for helpful discussions on starch metabolism in cryptophytes. This work was supported by the DFG (project SFB593 to U.-G. Maier and project KR 1661/3-1 to P.G. Kroth). Accession numbers are as follows: AJ784213, AJ937541, AJ937542, AJ937543, AJ937544, AJ937545, AJ937546.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe-G. Maier.

Additional information

[Reviewing Editor: Dr. Yves Van de Peer]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, S.B., Sommer, M.S., Hadfi, K. et al. Protein Targeting into the Complex Plastid of Cryptophytes. J Mol Evol 62, 674–681 (2006). https://doi.org/10.1007/s00239-005-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0099-y

Keywords

Navigation