Skip to main content

Carotenoid Synthesis and Accumulation in Microalgae Under Environmental Stress

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

In oxygenic phototrophs including cyanobacteria, algae, and land plants, carotenoids serve the light-harvesting function together with chlorophylls and photoprotective functions. High-intensity irradiation can cause excess excitation pressure on photo system II (PSII) of chloroplasts and can generate reactive oxygen species resulting in the photodamage to PSII. In general, to prevent the photodamage to photosynthetic apparatus, carotenoids dissipate excitation energy of singlet-state chlorophylls as heat (xanthophyll-dependent non-photochemical quenching) and also quench triplet-state chlorophylls in antenna complexes of PSII. Carotenoids also quench singlet oxygen in the reaction center of PSII. Light is one of the most striking environmental cues that alter the expression of carotenoid biosynthetic genes and induce the carotenogenesis in microalgae. Light-induced accumulation of carotenoids is reported in certain algae such as Haematococcus pluvialis, Dunaliella salina, Chlorella zofingiensis, and Euglena gracilis. Besides light stress, various abiotic stresses, such as heat, low temperature, drought, salinity, and oxidative stress, can enhance the extent of photoinhibition in photosynthetic organisms and can also induce the accumulation of carotenoids in microalgae. Here, we summarize studies on the regulation of biosynthesis and accumulation of carotenoids in eukaryotic microalgae in response to environmental stimuli especially focusing on the light and temperature. In addition, here we show our recent findings on the carotenoid biosynthesis in Euglena gracilis in response to increasing light intensity and light-induced stress enhanced by decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre, M. T. A., Lührs, D. C., van Stokkum, I. H. M., Hiller, R., Groot, M.-L., Kennis, J. T. M., et al. (2007). Triplet state dynamics in peridinin-chlorophyll-a-protein: A new pathway of photoprotection in LHCs? Biophysical Journal, 93, 2118–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista, J. A., Hiller, R. G., Sharples, F. P., Gosztola, D., Wasielewski, M., & Frank, H. A. (1999). Singlet and triplet energy transfer in the peridinin−chlorophyll a−protein from Amphidinium carterae. Journal of Physical Chemistry A, 103, 2267–2273.

    Article  CAS  Google Scholar 

  • Beltrán, J., Kloss, B., Hosler, J. P., Geng, J., Liu, A., Modi, A., et al. (2015). Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nature Chemical Biology, 11, 598–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Amotz, A. (1996). Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). Journal of Phycology, 32, 272–275.

    Article  CAS  Google Scholar 

  • Bohne, F., & Linden, H. (2002). Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta, 1579, 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Britton, G., Liaaen-Jensen, S., & Pfander, H. (2004). Carotenoids. Birkhäuser, Basel: Handbook.

    Book  Google Scholar 

  • Campo, J. A. D., Rodríguez, H., Moreno, J., Vargas, M. Á., Rivas, J., & Guerrero, M. G. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64, 848–854.

    Article  PubMed  CAS  Google Scholar 

  • Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. Agriculture, Ecosystems & Environment, 106, 119–133.

    Article  CAS  Google Scholar 

  • Eilers, U., Bikoulis, A., Breitenbach, J., Büchel, C., & Sandmann, G. (2016). Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of Applied Phycology, 28, 123–129.

    Article  CAS  Google Scholar 

  • Fábregas, J., Maseda, A., Domínguez, A., Ferreira, M., & Otero, A. (2002). Changes in the cell composition of the marine microalga, Nannochloropsis gaditana, during a light: dark cycle. Biotechnology Letters, 24, 1699–1703.

    Article  Google Scholar 

  • Gómez, P. I., & González, M. A. (2005). The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biological Research, 38, 151–162.

    Article  PubMed  Google Scholar 

  • Goss, R., & Jakob, T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research, 106, 103–122.

    Article  CAS  PubMed  Google Scholar 

  • Goto, K., & Johnson, C. H. (1995). Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. Journal of Cell Biology, 129, 1061–1069.

    Article  CAS  Google Scholar 

  • Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., & Saenger, W. (2009). Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Structural & Molecular Biology, 16, 334–342.

    Article  CAS  Google Scholar 

  • Harris, D., Tal, O., Jallet, D., Wilson, A., Kirilovsky, D., & Adir, N. (2016). Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proceedings of National Academy of Sciences, 113, 1655–1662.

    Google Scholar 

  • Hofmann, E., Wrench, P. M., Sharples, F. P., Hiller, R. G., Welte, W., & Diederichs, K. (1996). Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science, 272, 1788–1791.

    Google Scholar 

  • Huang, J., Liu, J., Li, Y., & Chen, F. (2008). Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). Journal of Phycology, 44, 684–690.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, Y., Komura, M., Watanabe, M., Minami, C., Koike, H., Itoh, S., et al. (2008). Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochimica et Biophysica Acta, 1777, 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., & Krauß, N. (2001). Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411, 909–917.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya, N., & Shen, J.-R. (2003). Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proceedings of National Academy of Sciences, 100, 98–103.

    Article  CAS  Google Scholar 

  • Kato, S., Takaichi, S., Ishikawa, T., Asahina, M., Takahashi, S., & Shinomura, T. (2016). Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis. BMC Plant Biology, 16, 1–12.

    Article  CAS  Google Scholar 

  • Kato, S., Soshino, M., Takaichi, S., Ishikawa, T., Nagata, N., Asahina, M., et al. (2017). Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis. BMC Plant Biology, 17, 1–10.

    Article  CAS  Google Scholar 

  • Kato, S., Tanno, Y., Takaichi, S., & Shinomura, T. (2019). Low temperature stress alters the expression of phytoene desaturase genes (crtP1 and crtP2) and the ζ-carotene desaturase gene (crtQ) together with the cellular carotenoid content of Euglena gracilis. Plant and Cell Physiology, 60, 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld, C. A., Sawaya, M. R., Brahmandam, V., Cascio, D., Ho, K. K., Trevithick-Sutton, C. C., et al. (2003). The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure, 11, 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 56, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Król, M., Maxwell, D. P., & Huner, N. P. A. (1997). Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant and Cell Physiology, 38, 213–216.

    Article  Google Scholar 

  • Lamers, P. P., van de Laak, C. C. W., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C. H., et al. (2010). Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnology and Bioengineering, 106, 638–648.

    Article  CAS  PubMed  Google Scholar 

  • Lavaud, J., Rousseau, B., van Gorkom, H. J., & Etienne, A.-L. (2002). Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiology, 129, 1398–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepetit, B., Volke, D., Gilbert, M., Wilhelm, C., & Goss, R. (2010). Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiology, 154, 1905–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Huang, J., Sandmann, G., & Chen, F. (2009). High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). Journal of Phycology, 45, 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., et al. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 428, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Lv, H., Xia, F., Liu, M., Cui, X., Wahid, F., & Jia, S. (2016). Metabolomic profiling of the astaxanthin accumulation process induced by high light in Haematococcus pluvialis. Algal Research, 20, 35–43.

    Article  Google Scholar 

  • Mishra, N. P., & Ghanotakis, D. F. (1994). Exposure of a photosystem II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. Biochimica et Biophysica Acta, 1187, 296–300.

    Article  CAS  Google Scholar 

  • Miyagishima, S., Fujiwara, T., Sumiya, N., Hirooka, S., Nakano, A., Kabeya, Y., et al. (2014). Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nature Communications, 5, 1–11.

    Article  CAS  Google Scholar 

  • Miyao, M., Ikeuchi, M., Yamamoto, N., & Ono, T. (1995). Specific degradation of the D1 protein of photosystem II by treatment with hydrogen peroxide in darkness: Implications for the mechanism of degradation of the D1 protein under illumination. Biochemistry, 34, 10019–10026.

    Article  CAS  PubMed  Google Scholar 

  • Monnier, A., Liverani, S., Bouvet, R., Jesson, B., Smith, J. Q., Mosser, J., et al. (2010). Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics, 11, 1–13.

    Article  CAS  Google Scholar 

  • Müller, P., Li, X.-P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagao, R., Ishii, A., Tada, O., Suzuki, T., Dohmae, N., Okumura, A., et al. (2007). Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochimica et Biophysica Acta, 1767, 1353–1362.

    Article  CAS  PubMed  Google Scholar 

  • Nagao, R., Yokono, M., Teshigahara, A., Akimoto, S., & Tomo, T. (2014). Light-harvesting ability of the fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom Chaetoceros gracilis as revealed by picosecond time-resolved fluorescence spectroscopy. The Journal of Physical Chemistry B, 118, 5093–5100.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., & Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 43, 11321–11330.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2008). Regulation by environmental conditions of the repair of photosystem II in cyanobacteria. In B. Demmig-Adams, W. W. Adams, & A. K. Mattoo (Eds.), Photoprotection, photoinhibition, gene regulation, and environment (pp. 193–203). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T., & Miyao, M. (1996). Selective and specific cleavage of the D1 and D2 proteins of photosystem II by exposure to singlet oxygen: Factors responsible for the susceptibility to cleavage of the proteins. Biochimica et Biophysica Acta, 1274, 73–79.

    Article  Google Scholar 

  • Orset, S., & Young, A. J. (1999). Low-temperature-induced synthesis of α-carotene in the microalga Dunaliella salina (Chlorophyta). Journal of Phycology, 35, 520–527.

    Article  CAS  Google Scholar 

  • Polívka, T., Hiller, R. G., & Frank, H. A. (2007). Spectroscopy of the peridinin-chlorophyll-a protein: Insight into light-harvesting strategy of marine algae. Archives of Biochemistry and Biophysics, 458, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Ruban, A. V., Lavaud, J., Rousseau, B., Guglielmi, G., Horton, P., & Etienne, A.-L. (2004). The super-excess energy dissipation in diatom algae: Comparative analysis with higher plants. Photosynthesis Research, 82, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Schulte, T., Niedzwiedzki, D. M., Birge, R. R., Hiller, R. G., Polívka, T., Hofmann, E., et al. (2009). Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy. Proceedings of National Academy of Sciences, 106, 20764–20769.

    Article  CAS  Google Scholar 

  • Sedoud, A., López-Igual, R., Ur Rehman, A., Wilson, A., Perreau, F., Boulay, C., Vass, I., et al. (2014). The cyanobacterial photoactive orange carotenoid protein is an excellent singlet oxygen quencher. Plant Cell, 26, 1781–1791.

    Google Scholar 

  • Sorek, M., Yacobi, Y. Z., Roopin, M., Berman-Frank, I., & Levy, O. (2013). Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae. Proceedings of the Royal Society B: Biological Sciences, 280, 1–9.

    Google Scholar 

  • Standfuss, J., van Scheltinga, A. C. T., Lamborghini, M., & Kühlbrandt, W. (2005). Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO Journal, 24, 919–928.

    Article  CAS  Google Scholar 

  • Steinbrenner, J., & Linden, H. (2001). Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiology, 125, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner, J., & Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: Regulation by photosynthetic redox control. Plant Molecular Biology, 52, 343–356.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T.-H., Liu, C.-Q., Hui, Y.-Y., Wu, W.-K., Zhou, Z.-G., & Lu, S. (2010). Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii. Journal of Integrative Plant Biology, 52, 868–878.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13, 178–182.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs, 9, 1101–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telfer, A. (2014). Singlet oxygen production by PSII under light stress: Mechanism, detection and the protective role of β-carotene. Plant and Cell Physiology, 55, 1216–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjahjono, A. E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N., & Nagai, S. (1994). Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnology Letters, 16, 133–138.

    Article  CAS  Google Scholar 

  • Toledo-Ortiz, G., Johansson, H., Lee, K. P., Bou-Torrent, J., Stewart, K., Steel, G., et al. (2014). The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics, 10, 1–14.

    Article  CAS  Google Scholar 

  • Triantaphylidès, C., & Havaux, M. (2009). Singlet oxygen in plants: Production, detoxification and signaling. Trends in Plant Science, 14, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Umena, Y., Kawakami, K., Shen, J.-R., & Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Zarka, A., Trebst, A., & Boussiba, S. (2003). Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. Journal of Phycology, 39, 1116–1124.

    Article  CAS  Google Scholar 

  • Welsch, R., Zhou, X., Yuan, H., Álvarez, D., Sun, T., Schlossarek, D., et al. (2018). Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Molecular Plant, 11, 149–162.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A., Ajlani, G., Verbavatz, J.-M., Vass, I., Kerfeld, C. A., & Kirilovsky, D. (2006). A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell, 18, 992–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, A., Punginelli, C., Gall, A., Bonetti, C., Alexandre, M., Routaboul, J.-M., et al. (2008). A photoactive carotenoid protein acting as light intensity sensor. Proceedings of National Academy of Sciences, 105, 12075–12080.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the funding from Japan Society for the Promotion of Science [grant number 17K07945] and Ministry of Education, Culture, Sports, Science and Technology [grant number S1311014] to T. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Shinomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, S., Shinomura, T. (2020). Carotenoid Synthesis and Accumulation in Microalgae Under Environmental Stress. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_4

Download citation

Publish with us

Policies and ethics