Skip to main content
Log in

Astaxanthin biosynthesis enhanced by reactive oxygen species in the green algaHaematococcus pluvialis

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The unicellular green algaHaematococcus pluvialis has recently attracted great interest due to its large amounts of ketocarotenoid astaxanthin, 3,3′-dihydroxy-β,β-carotene-4,4′-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle ofH. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from vegetative to cyst cells. Furthermore, measurements of bothin vitro andin vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benemann, J. R. (1992) Microalgae aquaculture feeds.J. Appl. Phycol. 4: 233–245.

    Article  Google Scholar 

  2. Terao, J. (1989) Antioxidant activity of β-carotene-related carotenoids in solution.Lipids 24: 659–661.

    Article  CAS  Google Scholar 

  3. Palozza, P. and N. I. Krinsky (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model.Arch. Biochem. Biophys. 297: 291–295.

    Article  CAS  Google Scholar 

  4. Kobayashi, M. and Y. Sakamoto (1999) Singlet oxygen quenching ability of astaxanthin esters from the green algaHaematococcus pluvialis.Biotechnol. Lett. 21: 265–269.

    Article  CAS  Google Scholar 

  5. Guerin, M., M. E. Huntley, and M. Olaizola (2003)Haematococcus astaxanthin: Applications for human health and nutrition.Trends Biotechnol. 21: 210–216.

    Article  CAS  Google Scholar 

  6. Johnson, E. A. and G.-H. An (1991) Astaxanthin from microbial sources.Crit. Rev. Biotechnol. 11: 297–326.

    Article  CAS  Google Scholar 

  7. Kobayashi, M., T. Kakizono, and S. Nagai (1991) Astaxanthin production by a green alga,Haematococcus pluvialis accompanied with morphological changes in acetate media.J. Ferment. Bioeng. 71: 335–339.

    Article  CAS  Google Scholar 

  8. Johnson, E. A. and W. A. Schroeder (1995) Microbial carotenoids.Adv. Biochem. Eng. Biotechnol. 53: 119–178.

    Google Scholar 

  9. Grung, M., F. M. L. D’Souza, M. Borowitzka, and S. Liaaen-Jensen (1992) Algal carotenoids 51. Secondary carotenoids 2.Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters.J. Appl. Phycol. 4: 165–171.

    Article  CAS  Google Scholar 

  10. Borowitzka, M. A., J. M. Huisman, and A. Osborn (1991) Culture of the astaxanthin-producing green algaHaematococcus pluvialis: 1. Effect of nutrients on growth and cell type.J. Appl. Phycol. 3: 295–304.

    CAS  Google Scholar 

  11. Boussiba, S. and A. Vonshak (1991) Astaxanthin accumulation in the green algaHaematococcus pluvialis.Plant Cell Physiol. 32: 1077–1082.

    CAS  Google Scholar 

  12. Lee, Y.-K. and S.-Y. Ding (1994) Cell cycle and accumulation of astaxanthin inHaematococcus lacustris (Chlorophyta).J. Phycol. 30: 445–449.

    Article  CAS  Google Scholar 

  13. Kobayashi, M., Y. Kurimura, T. Kakizono, N. Nishio, and Y. Tsuji (1997) Morphological changes in the life cycle of the green algaHaematococcus pluvialis.J. Ferment. Bioeng. 84: 94–97

    Article  CAS  Google Scholar 

  14. Kobayashi, M., T. Kakizono, and S. Nagai (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga,Haematococcus pluvialis.Appl. Environ. Microbiol. 59: 867–873.

    CAS  Google Scholar 

  15. Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga,Haematococcus pluvialis.J. Ferment. Bioeng. 74: 61–63.

    Article  CAS  Google Scholar 

  16. Kobayashi, M., N. Hirai, Y. Kurimura, H. Ohigashi, and Y. Tsuji (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green algaHaematococcus pluvialis.Plant Growth Regul. 22: 79–85.

    Article  CAS  Google Scholar 

  17. Kobayashi, M., Y. Kurimura, and Y. Tsuji (1997) Light-independent astaxanthin production by the green micro-algaHaematococcus pluvialis under salt stress.Biotechnol. Lett. 19: 507–509.

    Article  CAS  Google Scholar 

  18. Tjahjono, A. E., Y. Hayama, Y. Kakizono, Y. Terada, N. Nishio, and S. Nagai (1994) Hyper-accumulation of astaxanthin in a green algaHaematococcus pluvialis at elevated temperatures.Biotechnol. Lett. 16: 133–138.

    Article  CAS  Google Scholar 

  19. Schroeder, W. A. and E. A. Johnson (1993) Antioxidant role of carotenoids inPhaffia rhodozyma.J. Gen. Microbiol. 139: 907–912.

    CAS  Google Scholar 

  20. Shaish, A., M. Avron, U. Pick, and A. Ben-Amotz (1993) Are active oxygen species involved in induction of β-carotene inDunaliella bardawil? Planta 190: 363–368.

    Article  CAS  Google Scholar 

  21. Kobayashi, M., T. Kakizono, N. Nishio, S. Nagai, Y. Kurimura, and Y. Tsuji (1997) Antioxidant role of astaxanthin in the green algaHaematococcus pluvialis.Appl. Microbiol. Biotechnol. 48: 351–356.

    Article  CAS  Google Scholar 

  22. Kobayashi, M. (2000)In vivo antioxidant role of astaxanthin under oxidative stress in the green algaHaematococcus pluvialis.Appl. Microbiol. Biotechnol. 54: 550–555.

    Article  CAS  Google Scholar 

  23. Kobayashi, M. (2001) Algal carotenoid biosynthesis enhanced by active oxygen under environmental stress.Protein, Nucleic Acid and Enzyme 46: 2073–2077 (in Japanese).

    CAS  Google Scholar 

  24. Kobayashi, M., T. Kakizono, K. Yamaguchi, N. Nishio, and S. Nagai (1992) Growth and astaxanthin formation ofHaematococcus pluvialis in heterotrophic and mixotrophic conditions.J. Ferment. Bioeng. 74: 17–20.

    Article  CAS  Google Scholar 

  25. Britton, G. (1988) Biosynthesis of carotenoids. pp. 133–182. In: T. W. Goodwin (ed.).Plant Pigments. Academic Press, London, UK.

    Google Scholar 

  26. Fraser, P. D., Y. Miura, and N. Misawa (1997).In vitro characterization of astaxanthin biosynthetic enzymes.J. Biol. Chem. 272: 6128–6135.

    Article  CAS  Google Scholar 

  27. Cunningham, F. X. and E. Gantt (1998) Genes and enzymes of carotenoid biosynthesis in plants.Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557–583.

    Article  CAS  Google Scholar 

  28. Moran, J. F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R. V. Klucas, and P. Aparicio-Tejo (1994) Drought induces oxidative stress in pea plants.Planta 194: 346–352.

    Article  CAS  Google Scholar 

  29. Price, A. H., N. M. Atherton, and G. A. F. Hendry (1989) Plants under drought-stress generate activated oxygen.Free Rad. Res. Comms 8: 61–66.

    Article  CAS  Google Scholar 

  30. Zeevaart, J. A. D. and R. A. Creelman (1988) Metabolism and physiology of abscisic acdi.Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 439–473.

    Article  CAS  Google Scholar 

  31. Hirsch, R., W. Hartung, and H. Gimmler (1989) Abscisic acid content of algae under stress.Bot. Acta 102: 326–334.

    CAS  Google Scholar 

  32. Yoshida, K., E. Igarashi, M. Mukai, K. Hirata, and K. Miyamoto (2003) Induction of tolerance to oxidative stress in the green alga,Chlamydomonas reinhardtii, by abscisic acid.Plant Cell Environ. 26: 451–457.

    Article  CAS  Google Scholar 

  33. Young, A. J. (1991) The photoprotective role of carotenoids in higher plants.Physiol. Plant. 83: 702–708.

    Article  CAS  Google Scholar 

  34. Santos, M. F. and J. F. Mesquita (1984) Ultrastructural study ofHaematococcus lacustris (Girod.) Rostafinski (Volvocales): I. Some aspects of carotenogenesis.Cytologia 49: 215–228.

    Google Scholar 

  35. Kobayashi, M. and T. Okada (2000) Protective role of astaxanthin against UV-B irradiation in the green algaHaematococcus pluvialis.Biotechnol. Lett. 22: 177–181.

    Article  CAS  Google Scholar 

  36. Johnson, E. A. and W. A. Schroeder (1996) Biotechnology of astaxanthin production inPhaffia rhodozyma.ACS Sym. Ser. 637: 39–50.

    Article  CAS  Google Scholar 

  37. Fukuzawa, K., Y. Inokami, A. Tokumura, J. Terao, and A. Suzuki (1998) Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes.Lipids 33: 751–756.

    Article  CAS  Google Scholar 

  38. Simidzu, N., M. Goto, and W. Miki (1996) Carotenoids as singlet oxygen quenchers in marine organisms.Fish. Sci. 62: 134–137.

    Google Scholar 

  39. Halliwell, B. and J. M. C. Gutteridge (1989)Free Radicals in Biology and Medicine. 2nd ed. Oxford University Press, Oxford, UK.

    Google Scholar 

  40. Bass, D. A., J. W. Parce, L. R. Dechatelet, P. Szejda, M. C. Seeds, and M. Thomas (1983) Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation.J. Immunol. 130: 1910–1917.

    CAS  Google Scholar 

  41. Malanga, G. and S. Puntarulo (1995) Oxidative stress and antioxidant content inChlorella vulgaris after exposure to ultraviolet-B radiation.Physiol. Plant. 94: 672–679.

    Article  CAS  Google Scholar 

  42. Collén, J. and I. R. Davison (1997)In vivo measurement of active oxygen production in the brown algaFucus evanescens using 2′,7′-dichlorohydrofluorescein diacetate.J. Phycol. 33: 643–648.

    Article  Google Scholar 

  43. Sandmann, G. (1994) Carotenoid biosynthesis in microorganisms and plants.Eur. J. Biochem 223: 7–24.

    Article  CAS  Google Scholar 

  44. Misawa, N. and H. Shimada (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts.J. Biotechnol. 59: 169–181.

    Article  CAS  Google Scholar 

  45. Margalith, P. Z. (1999) Production of ketocarotenoids by microalgae.Appl. Microbiol. Biotechnol. 51: 431–438.

    Article  CAS  Google Scholar 

  46. Boussiba, S. (2000) Carotenogenesis in the green algaHaematococcus pluvialis: Cellular physiology and stress response.Physiol. Plant. 108: 111–117.

    Article  CAS  Google Scholar 

  47. Schoefs, B., N.-E. Rmiki, J. Rachadi, and Y. Lemoine (2001) Astaxanthin accumulation inHaematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids.FEBS Lett. 500: 125–128.

    Article  CAS  Google Scholar 

  48. Kajiwara, S., T. Kakizono, T. Saito, K. Kondo, T. Ohtani, N. Nishio, S. Nagai, and N. Misawa (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis fromHaematococcus pluvialis, and astaxanthin synthesis inEscherichia coli.Plant Mol. Biol. 29: 343–352.

    Article  CAS  Google Scholar 

  49. Lotan, T. and J. Hirschberg (1995) Cloning and expression inEscherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin inHaematococcus pluvialis.FEBS Lett. 364: 125–128.

    Article  CAS  Google Scholar 

  50. Linden, H. (1999) Carotenoid hydroxylase fromHaematococcus pluvialis: cDNA sequence, regulation and functional complementation.Biochim. Biophys. Acta 1446: 203–212 (1999).

    CAS  Google Scholar 

  51. Grünewald, K., J. Hirschberg, and C. Hagen (2001) Keto-carotenoid biosynthesis outside of plastids in the unicellular green algaHaematococcus pluvialis.J. Biol. Chem. 276: 6023–6029.

    Article  Google Scholar 

  52. Steinbrenner, J. and H. Linden (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green algaHaematococcus pluvialis.Plant Physiol. 125: 810–817.

    Article  CAS  Google Scholar 

  53. Bouvier, F., R. A. Backhaus, and B. Camara (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress.J. Biol. Chem. 273: 30651–30659.

    Article  CAS  Google Scholar 

  54. Nievelstein, V., J. Vandekerckhove, M. H. Tadros, J. V. Lintig, W. Nitschke, and P. Beyer (1995) Carotene desaturation is linked to a respiratory redox pathway inNarcissus pseudonarcissus chromoplast membranes: Involvement of a 23-kDa oxygen-evolving-complex-like protein:Eur. J. Biochem. 233: 864–872.

    Article  CAS  Google Scholar 

  55. Tan, S., F. X. Cunningham, M. Youmans, B. Grabowski, Z. Sun, and E. Gantt (1995) Cytochromef loss in astaxanthin-accumulating red cells ofHaematococcus pluvialis (Chlorophyceae): Comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells.J. Phycol. 31: 897–905.

    Article  CAS  Google Scholar 

  56. Steinbrenner, J. and H. Linden (2003) Light induction of carotenoid biosynthesis genes in the green algaHaematococcus pluvialis: Regulation by photosynthetic redox control.Plant Mol. Biol. 52: 343–356.

    Article  CAS  Google Scholar 

  57. Tjahjono, A. E., T. Kakizono, Y. Hayama, N. Nishio, and S. Nagai (1994) Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green algaHaematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers.J. Ferment. Bioeng. 77: 352–357.

    Article  CAS  Google Scholar 

  58. Chumpolkulwong, N., T. Kakizono, T. Handa, and N. Nishio (1997) Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green algaHaematococcus pluvialis.Biotechnol. Lett. 19: 299–302.

    Article  CAS  Google Scholar 

  59. Tripathi, U., G. Venkateshwaran, R. Sarada, and G. A. Ravishankar (2001) Studies onHaematococcus pluvialis for improved production of astaxanthin by mutagenesis.World J. Microbiol. Biotechnol. 17: 143–148.

    Article  CAS  Google Scholar 

  60. Chen, Y., D. Li, W. Lu, J. Xing, B. Hui, and Y. Han (2003) Screening and characterization of astaxanthin-hyperproducing mutants ofHaematococcus pluvialis.Biotechnol. Lett. 25: 527–529.

    Article  CAS  Google Scholar 

  61. Tjahjono, A. E., T. Kakizono, Y. Hayama, and S. Nagai (1993) Formation and regeneration of protoplast from a unicellular green algaHaematococcus pluvialis.J. Ferment. Bioeng. 75: 196–200.

    Article  Google Scholar 

  62. Teng, C., S. Qin, J. Liu, D. Yu, C. Liang, and C. Tseng (2002) Transient expression oflacZ in bombarded unicellular green algaHaematococcus pluvialis.J. Appl. Phycol. 14: 495–500.

    Article  Google Scholar 

  63. Nonomura, A. M. and D. M. Coder (1988) Improved phycocatalysis of carotene production by flow cytometry and cell sorting.Biocatalysis 1: 333–338.

    Article  CAS  Google Scholar 

  64. Kobayashi, M., T. Katsuragi, and Y. Tani (2001) Enlarged and astaxanthin-accumulating cyst cells of the green algaHaematococcus pluvialis.J. Biosci. Bioeng. 92: 565–568.

    Article  CAS  Google Scholar 

  65. An, G.-H., J. Bielich, R. Auerbach, and E. A. Johnson (1991) Isolation and characterization of carotenoid hyper-producing mutants of yeast by flow cytometry and cell sorting.Bio/Technol. 9: 70–73.

    Article  CAS  Google Scholar 

  66. Rabbani, S., P. Beyer, J. von Lintig, P. Hugueney, and H. Kleinig (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular algaDunaliella bardawil.Plant Physiol. 116: 1239–1248.

    Article  CAS  Google Scholar 

  67. Lorenz, R. T. and G. R. Cysewski (2000) Commercial potential forHaematococcus microalgae as a natural source of astaxanthin.Trends Biotechnol. 18: 160–167.

    Article  CAS  Google Scholar 

  68. Spiller, G. A. and A. Dewell (2003) Safety of an astaxanthin-richHaematococcus pluvialis algal extract: A randomized clinical trial.J. Med. Food 6: 51–56.

    Article  CAS  Google Scholar 

  69. Kobayashi, M. (2002) Astaxanthin production byHaematococcus.Seibutsu-Kogaku 80: 244–246 (in Japanese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makio Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, M. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green algaHaematococcus pluvialis . Biotechnol. Bioprocess Eng. 8, 322–330 (2003). https://doi.org/10.1007/BF02949275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949275

Keywords

Navigation