Skip to main content

Advertisement

Log in

A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Precision agriculture (PA) is the use of information and communication technology together with best agricultural practices for farm management. PA requires the acquisition, transmission and processing of large amounts of data from farm fields. A wireless sensor network (WSN) is a system for monitoring agriculture fields. Several researchers have used WSNs to collect the required data from the regions of interest for their intended usages in various applications. In a WSN, the energy consumption of the sensor nodes is the main issue, due to its direct impact on the lifetime of the network. Many approaches have been proposed to address this issue using different power sources and types of nodes. Specifically, in PA, because of the extended time period that is required to monitor fields, using an appropriate WSN approach is important. There is a need for a comprehensive review of WSN approaches for PA. The aim of this paper is to classify and describe the state-of-the-art of WSNs and analyze their energy consumption based on their power sources. WSN approaches in PA are categorized and discussed according to their features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AG:

Above ground

BS:

Base station

CP:

Center pivot

ET:

Evaporation–transpiration

FW:

Full-wave

GW:

Gateway

GPRS:

General packet radio service

GPS:

Global positioning system

IMS:

Irrigation management system

iPAGAT:

Intelligent precision agriculture gateway

IS:

Irrigation station

ISSPA:

Integrated wireless sensor networks solution for PA

KIP-AF:

Knowledge information processor for agriculture sensor data and fire-sensor data

LNA:

Low noise amplifier

LOFAR:

Low frequency array

LOS:

Line of sight

LQI:

Line quality indicator

MAC:

Medium access control

PA:

Precision agriculture

PC:

Personal computer

PHP:

Hypertext preprocessor

RF:

Radio frequency

RFID:

Radio-frequency identification

RMS:

Remote monitoring station

RSSI:

Received signal strength indicator

RTAS:

Real-time alert system

RTK-DGPS:

Real-time kinematic differential global positioning system

SEA:

Single ended elliptical antenna

SIM:

Subscriber identity model

T-MAC:

Time-out medium access control

TDMA:

Time division multiple access

TinyOS:

Tiny operation system

UG:

Underground

VRI:

Variable rate irrigation

WC:

Wireless co-ordinator

WED:

Wireless end device

WSN:

Wireless sensor networks

WR:

Wireless router

WUSN:

Wireless underground sensor networks

XML:

Extensible mark-up language

ZC:

ZigBee co-ordinator

ZED:

ZigBee end device

ZSIM:

ZigBee enabled SIM

References

  • Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568.

    Article  Google Scholar 

  • Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013a). EDR: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12, 46–55.

    Article  Google Scholar 

  • Anisi, M. H., Abdullah, A. H., & Razak, S. A. (2013b). Energy-efficient and reliable data delivery in wireless sensor networks. Wireless Networks, 19, 495–505.

    Article  Google Scholar 

  • Baggio, A., 2005. Wireless sensor networks in precision agriculture, In: A. Dunkels, B. Ahlgren, P. Gunningberg, S. Janson, C. Rohner and T. Voigt (Eds.), ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005). ACM, New York, NY, USA, pp. 1-2.

  • Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30, 1655–1695.

    Article  Google Scholar 

  • Can, Z., & Demirbas, M. (2013). A survey on in-network querying and tracking services for wireless sensor networks. Ad Hoc Networks, 11, 596–610.

    Article  Google Scholar 

  • Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. (2013). Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture, 96, 13–22.

    Article  Google Scholar 

  • I.C.S.L.M.S. Committee (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11.

  • Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76, 252–265.

    Article  Google Scholar 

  • Dong, X., Vuran, M. C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11, 1975–1987.

    Article  Google Scholar 

  • Dubey, V., Dubey, N., & Chouhan, S. S. (2011). Wireless sensor network based remote irrigation control system and automation using DTMF code. In G. Tomar, A. Abraham, D. Bhatnagar, & A. Pandit (Eds.), IEEE international conference on communication systems and network technologies (CSNT) (pp. 34–37). Piscataway, NJ.

  • Dubois-Ferrière, H., Fabre, L., Meier, R., & Metrailler, P., (2006). TinyNode: A comprehensive platform for wireless sensor network applications. In J. Stankovic, P. Gibbons, S. Wicker & J. Paradiso (Eds.), Proceedings of the 5th international conference on Information processing in sensor networks (pp. 358-365). New York, NY: ACM.

  • Fernandes, M. A., Matos, S. G., Peres, E., Cunha, C. R., López, J. A., Ferreira, P., et al. (2013). A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 95, 19–30.

    Article  Google Scholar 

  • Gao, L., Zhang, M., & Chen, G. (2013). An Intelligent irrigation system based on wireless sensor network and fuzzy control. Journal of Networks, 8, 1080–1087.

    Google Scholar 

  • Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75, 288–303.

    Article  Google Scholar 

  • Hedley, C., Ekanayake, J., Roudier, P. (2012). Wireless soil moisture sensor networks for precision irrigation scheduling. In L. D. Currie & C. L. Christensen (Eds.), Workshop abstracts, advanced nutrient management: Gains from the past-goals for the future. (p. 85), New Zealand: Massey University.

  • Hou, J., Li, N., Stojmenovic, I., (2005). Topology construction and maintenance in wireless sensor networks. Handbook of sensor networks: Algorithms and architectures (pp. 311-341). New York, NY: Wiley.

  • Kim, Y.-D., Yang, Y.-M., Kang, W.-S., & Kim, D.-K. (2011). On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Computer Standards & Interfaces, 36, 288–299.

    Article  Google Scholar 

  • Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., et al. (2005). TinyOS: An operating system for sensor networks. In W. Weber, J. Rabaey, & E. Aarts (Eds.), Ambient intelligence (pp. 115–148). Berlin: Springer.

    Chapter  Google Scholar 

  • Mafuta, M., Zennaro, M., Bagula, A., Ault, G., Gombachika, H., & Chadza, T. (2013). Successful deployment of a wireless sensor network for precision agriculture in Malawi. International Journal of Distributed Sensor Networks, 2013, 1–13.

    Article  Google Scholar 

  • Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.

    Article  Google Scholar 

  • Mhatre, V., Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: a comparative study, In: H. Sari (Ed.), IEEE international conference on communications (IEEE ICC), (pp. 3646–3651). Piscataway, NJ.

  • Mogul, J. C., Douglis, F., Feldmann, A., & Krishnamurthy, B. (1997). Potential benefits of delta encoding and data compression for HTTP. In M. Steenstrup (Ed.), Proceeding of the ACM SIGCOMM’97 conference on applications, technologies, architectures, and protocols for computer communication (pp. 181–194). New York, NY: ACM.

  • Nesa Sudha, M., Valarmathi, M., & Babu, A. S. (2011). Energy efficient data transmission in automatic irrigation system using wireless sensor networks. Computers and Electronics in Agriculture, 78, 215–221.

    Article  Google Scholar 

  • Owojaiye, G., & Sun, Y. (2012). Focal design issues affecting the deployment of wireless sensor networks for pipeline monitoring. Ad Hoc Networks, 11, 1237–1253.

    Article  Google Scholar 

  • Park, C., Lahiri, K., & Raghunathan, A. (2005). Battery discharge characteristics of wireless sensor nodes: An experimental analysis. In E. Belding-Royer, M. Krunz & T. Nandagopal (Eds.), IEEE international conference on sensing, communication and networking (IEEE SECON) (pp. 20–21). Piscataway, NJ.

  • Peng, X. & Liu, G. (2012). Intelligent water-saving irrigation system based on fuzzy control and wireless sensor NETWORK. In X. Luo, Z. Luo, L. M. Ni & R. Wang (Eds.), Fourth IEEE international conference on digital home (ICDH) (pp. 252–256). Piscataway, NJ.

  • Peplinski, N. R., Ulaby, F. T., & Dobson, M. C. (1995). Dielectric properties of soils in the 0.3–1.3 GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33, 803–807.

    Article  Google Scholar 

  • Peres, E., Fernandes, M. A., Morais, R., Cunha, C. R., López, J. A., Matos, S. R., et al. (2011). An autonomous intelligent gateway infrastructure for in-field processing in precision viticulture. Computers and Electronics in Agriculture, 78, 176–187.

    Article  Google Scholar 

  • Pozar, D. M. (2000). Microwave and RF design of wireless systems. New York, NY: Wiley.

    Google Scholar 

  • Rathnayaka, A., & Potdar, V. M. (2013). Wireless sensor network transport protocol: A critical review. Journal of Network and Computer Applications, 36, 134–146.

    Article  Google Scholar 

  • Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors, 9, 4728–4750.

    Article  PubMed Central  PubMed  Google Scholar 

  • Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic, J., & Young, D. (2007). Luster: Wireless sensor network for environmental research. In S. Jha (Ed.), Proceedings of the 5th international conference on embedded networked sensor systems (SenSys) (pp. 103–116). New York, NY: ACM.

  • Senturk, I. F., & Akkaya, K. (2014). Mobile data collector assignment and scheduling for minimizing data delay in partitioned wireless sensor networks. In P. Bellavista, A. Mellouk & M. H. sherif (Eds.), Proceeding of the 5th international conference on ad hoc networks (ADHOCNETS) (pp. 15–31). Heidelberg: Springer.

  • Shaikh, Z., Yousuf, H., Nawaz, F., Kirmani, M., & Kiran, S. (2010). Crop irrigation control using wireless sensor and actuator network (WSAN). In IEEE International conference on information and emerging technologies (ICIET) (pp. 1–5). Red Hook, NY.

  • Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2014). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production. doi:10.1016/j.jclepro.2014.04.036.

  • Stankovic, J. A. (2008). When sensor and actuator networks cover the world. ETRI Journal, 30, 627–633.

    Article  Google Scholar 

  • Theodoridis, E., Chatzigiannakis, I., & Dulman, S. (2012). Post-processing in wireless sensor networks: Benchmarking sensor trace files for in-network data aggregation. Journal of Network and Computer Applications, 35, 548–561.

    Article  Google Scholar 

  • Tongtong, Y., Wenjie, F., & Zheying, L. (2011). Temperature and humidity wireless sensing and monitoring systems applied in greenhouse. In J. Wang (Ed.), IEEE International conference on computer science and network technology (ICCSNT) (pp. 857–861). Red Hook, NY.

  • Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In I. F. Akyildiz, D. Estrin, D. E. Culler & M. B. Srivastava (Eds.), Proceedings of the 1st international conference on embedded networked sensor systems (SenSys) (pp. 171–180). New York, NY: ACM.

  • Van Hoesel, L., TüYsüZ Erman, A., Dilo, A., & Havinga, P. J. (2013). Geo-casting of queries combined with coverage area reporting for wireless sensor networks. Ad Hoc Networks, 11, 104–123.

    Article  Google Scholar 

  • Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 61, 44–50.

    Article  Google Scholar 

  • Vellidis, G., Tucker, M., Perry, C., Reckford, D., Butts, C., Henry, H., Liakos, V., Hill, R. W., & Edwards, W. (2013). A soil moisture sensor-based variable rate irrigation scheduling system. In J.V. Stafford (Ed.), Precision Agriculture 2013—Proceedings of the 9th European conference on precision agriculture (9ECPA) (pp. 713–720). The Netherland: Wageningen Academic Publishers.

  • Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transactions on Sensor Networks (TOSN), 5, 9.

    Article  Google Scholar 

  • Wang, N., Zhang, N., & Wang, M. (2006). Wireless sensors in agriculture and food industry—recent development and future perspective. Computers and Electronics in Agriculture, 50, 1–14.

    Article  CAS  Google Scholar 

  • Watras, C., Morrow, M., Morrison, K., Scannell, S., Yaziciaglu, S., Read, J., et al. (2014). Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results. Environmental Monitoring and Assessment, 186, 919–934.

    Article  PubMed  Google Scholar 

  • Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., & Stankovic, J. (2006). ALARM-NET: Wireless sensor networks for assisted-living and residential monitoring. University of Virginia Computer Science Department Technical Report 2, VA.

  • Xu, Z., Lou, B., & Shao, G. (2012). An intelligent irrigation system for greenhouse jonquil based on ZigBee wireless sensor networks. Internet of things. (pp. 200–207). Berlin Heidelberg: Springer.

    Google Scholar 

  • Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35, 59–64.

    Article  Google Scholar 

  • Zhang, R.-B., Guo, J.-J., Zhang, L., Zhang, Y.-C., Wang, L.-H., & Wang, Q. (2011). A calibration method of detecting soil water content based on the information-sharing in wireless sensor network. Computers and Electronics in Agriculture, 76, 161–168.

    Article  Google Scholar 

  • Zhang, M., Li, M., Wang, W., Liu, C., & Gao, H. (2012). Temporal and spatial variability of soil moisture based on WSN. Mathematical and Computer Modelling, 58, 826–833.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Anisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisi, M.H., Abdul-Salaam, G. & Abdullah, A.H. A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agric 16, 216–238 (2015). https://doi.org/10.1007/s11119-014-9371-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9371-8

Keywords

Navigation