Skip to main content

Advertisement

Log in

Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)—all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barnhart, K., Urteaga, I., Han, Q., Jayasumana, A., & Illangasekare, T. (2010). On integrating groundwater transport models with wireless sensor networks. Ground Water, 48(5), 771–780. doi:10.1111/j.1745-6584.2010.00684.x.

    Article  CAS  Google Scholar 

  • Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655–1695. doi:10.1016/j.comcom.2006.12.020.

    Article  Google Scholar 

  • Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889–916.

    Article  Google Scholar 

  • Buffam, I., Carpenter, S. R., Yeck, W., Hanson, P. C., & Turner, M. G. (2010). Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district. Journal of Geophysical Research. doi:10.1029/2009JG001034.

    Google Scholar 

  • Buffam, I., Turner, M. G., Desai, A. R., Hanson, P. C., Rusak, J. A., Lottig, N. R., et al. (2011). Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology, 17, 193–1211.

    Article  Google Scholar 

  • Chong, C.-Y., & Kumar, S. P. (2003). Sensor network: evolution, opportunities and challenges. Proceedings of the IEEE, 91(8), 1247–1256. doi:10.1109/JPROC.2003.814918.

    Article  Google Scholar 

  • Drexler, J. Z., & Ewel, K. C. (2001). Effect of the 1997–1998 ENSO-related drought on hydrology and salinity in a Micronesian wetland complex. Estuaries, 24(3), 347–356.

    Article  Google Scholar 

  • Gerla, P. J. (1992). The relationship of water table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands, 12, 91–98.

    Article  Google Scholar 

  • Heinemeyer, A., Croft, S., Garnett, M. H., Gloor, E., Holden, J., Lomas, M. R., et al. (2010). The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands. Climate Research, 45, 207–226. doi:10.3354/cr00928.

    Article  Google Scholar 

  • Hemond, H. F. (1980). Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecological Monographs, 50(4), 507–526.

    Article  CAS  Google Scholar 

  • Holden, J., & Burt, T. P. (2003). Hydrological studies on Blanket Peat: the significance of the Acrotelm–Catotelm model. Journal of Ecology, 91(1), 86–102.

    Article  Google Scholar 

  • Ingram, H. A. P. (1982). Size and shape in raised mire ecosystems: a geophysical model. Nature, 297, 300–303.

    Article  Google Scholar 

  • Johnson, W. C., Millett, B. V., Gilmanov, T., Voldseth, R. A., Guntenspergen, G. R., & Naugle, D. E. (2005). Vulnerability of northern prairie wetlands to climate change. Bioscience, 55(10), 863–872.

    Article  Google Scholar 

  • Kido, M. H., Mundt, C. W., Montgomery, K. N., Asquith, A., Goodale, D. W., & Kaneshiro, K. Y. (2008). Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian “Mountain-to-Sea” environments. Environmental Management, 42(4), 658–666. doi:10.1007/s00267-008-9164-9.

    Article  Google Scholar 

  • Kratz, T. K., Webster, K. E., Riera, J. L., Lewis, D. B., & Pollard, A. I. (2006). Making sense of the landscape: geomorphic legacies and the landscape position of lakes. In J. J. Magnuson, T. K. Kratz, & B. J. Benson (Eds.), Long-term dynamics of lakes in the landscape (pp. 49–66). New York: Oxford.

    Google Scholar 

  • Lenters, J. D., Kratz, T. K., & Bowser, C. J. (2005). Effects of climate variability on lake evaporation: results from a long-term energy budget of Sparkling Lake, northern Wisconsin (USA). Journal of Hydrology, 308, 168–195.

    Article  Google Scholar 

  • Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., et al. (2008). Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences, 5, 1475–1491.

    Article  CAS  Google Scholar 

  • Loheide, S. P., II. (2008). A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology, 1, 59–66.

    Article  Google Scholar 

  • Mackay, D. S., Ewers, B. E., Cook, B. D., & Davis, K. J. (2007). Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resources Research. doi:10.1029/2006WR005149.

    Google Scholar 

  • Magnuson, J. J., Kratz, T. K., & Benson, B. J. (Eds.). (2006). Long-term dynamics of lakes in the landscape (Long-term Ecological Research Network Series). Oxford: Oxford University Press.

    Google Scholar 

  • Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In: Proceedings of the1st ACM International Workshop on Wireless Sensor Networks and Applications (Atlanta, Sept.). New York: ACM Press. pp. 88–97.

  • Marin, L. E., Kratz, T. K., & Bowser, C. J. (1990). Spatial and temporal patterns in the hydrogeochemistry of a poor fen in northern Wisconsin. Biogeochemistry, 11, 63–76.

    Article  CAS  Google Scholar 

  • Mitra, S., Wassmann, R., & Vlek, P. l. G. (2005). An appraisal of global wetland area and its organic carbon stack. Current Science, 88(1), 25–35.

    CAS  Google Scholar 

  • Porter, J. H., Nagy, E., Kratz, T. K., Hanson, P., Collins, S. L., & Arzberger, P. (2009). New eyes on the world: advanced sensors for ecology. BioScience, 59(5), 385–397. doi:10.1525/bio.2009.59.5.6.

    Article  Google Scholar 

  • Ritsema, C. J., Kuipers, H., Kleiboer, L., van den Elsen, E., Oostindie, K., Wesseling, J. G., et al. (2009). A new wireless underground network system for continuous monitoring of soil water contents. Water Resources Research. doi:10.1029/2008wr007071.

    Google Scholar 

  • Rosenberry, D. O., & Winter, T. C. (1997). Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. Journal of Hydrology, 191, 266–289.

    Article  Google Scholar 

  • Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. Communications of the ACM, 47(6), 34–40.

    Article  Google Scholar 

  • Watras, C. J., Hanson, P. C., Stacy, T. L., Morrison, K. M., Mather, J., Hu, Y.-H., et al. (2011). A temperature compensation method for CDOM fluorescence sensors in freshwater. Limnology and Oceanography: Methods, 9, 296–301.

    CAS  Google Scholar 

  • Webster, K. E., Bowser, C. J., Anderson, M. P., & Lenters, J. D. (2006). Understanding the lake-groundwater system: just follow the water. In J. J. Magnuson, T. K. Kratz, & B. J. Benson (Eds.), Long-term dynamics of lakes in the landscape (Long-Term Ecological Research Network Series) (pp. 19–48). Oxford: Oxford University Press.

    Google Scholar 

  • White, W. N. (1932). A method of estimating ground-water supplies based on the discharge by plants and evaporation from soils: results of investigations in Escalante Valley, Utah. U.S. Geol. Surv. Water Supply Paper.

Download references

Acknowledgments

Funding was provided by the Wisconsin Focus on Energy-EERD Program (www.focusonenergy.com/Enviro-Econ-Research/) and the Wisconsin Department of Natural Resources. Logistical support was provided by the Global Lake Ecological Observatory Network (www.gleon.org) and by the North Temperate Lakes Long Term Ecological Research Project (www.lter.limnology.wisc.edu/). We thank JR Rubsam for technical assistance in the field and laboratory, and we thank Harry Hemond for helpful discussions of wetland processes. The prototype nodes in Crystal Bog were built by Sean Scannell and Steve Yazicioglu, undergraduates in Electrical and Computer Engineering at UW-Madison, under the direct supervision of ECE instructor Mike Morrow. This is a contribution from the Trout Lake Research Station, University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Watras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watras, C.J., Morrow, M., Morrison, K. et al. Evaluation of wireless sensor networks (WSNs) for remote wetland monitoring: design and initial results. Environ Monit Assess 186, 919–934 (2014). https://doi.org/10.1007/s10661-013-3424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3424-8

Keywords

Navigation