Skip to main content
Log in

A biharmonic converse to Krein–Rutman: a maximum principle near a positive eigenfunction

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

The Green function \(G_0(x,y)\) for the biharmonic Dirichlet problem on a smooth domain \(\Omega \), that is \(\Delta ^{2}u=f\) in \(\Omega \) with \( u=u_{n}=0 \) on \(\partial \Omega \), can be written as the difference of a positive function, which bears the singularity at \(x=y\), and a rank-one positive function, both of which satisfy the boundary conditions. See Grunau et al. (Proc Am Math Soc 139:2151–2161, 2011). More precisely \(G_0(x,y)= H(x,y)- c\, d(x)^2 d(y)^2\) holds, where \(d(\cdot )\) is the distance to the boundary \(\partial \Omega \) and where H contains the singularity and is positive. We will extend the corresponding estimates to \( G_{\lambda }(x,y)\) for the differential operator \(\Delta ^{2}-\lambda \) with an optimal dependence on \(\lambda \). As a consequence, strict positivity of an eigenfunction with a simple eigenvalue \(\lambda _{i}\) implies a positivity preserving property for \(\left( \Delta ^{2}-\lambda \right) u=f\) in \(\Omega \) with \(u=u_{n}=0\) on \(\partial \Omega \) for \(\lambda \) in a left neighbourhood of \(\lambda _{i} \). This result can be viewed as a converse to the Krein–Rutman theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, San Diego (2003)

    MATH  Google Scholar 

  2. Agmon, S.: On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems. Commun. Pure Appl. Math. 18, 627–663 (1965)

    Article  MathSciNet  Google Scholar 

  3. Boggio, T.: Sulle funzioni di Green d’ordine \(m\). Rend. Circolo Mat. Palermo 20, 97–135 (1905)

    Article  Google Scholar 

  4. Brown, B.M., Davies, E.B., Jimack, P.K., Mihajlović, M.D.: A numerical investigation of the solution of a class of fourth-order eigenvalue problems. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456, 1505–1521 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Q.-M., Wei, G.: Upper and lower bounds for eigenvalues of the clamped plate problem. J. Differ. Equ. 255, 220–233 (2013)

    Article  MathSciNet  Google Scholar 

  6. Clément, P., Sweers, G.: Uniform anti-maximum principles. J. Differ. Equ. 164, 118–154 (2000)

    Article  MathSciNet  Google Scholar 

  7. Coffman, C.V., Duffin, R.J., Shaffer, D.H.: The fundamental mode of vibration of a clamped annular plate is not of one sign. In: Constructive Approaches to Mathematical Models (Proc. Conf. in honor of R.J. Duffin, Pittsburgh, Pa., 1978), pp. 267–277. Academic Press, New York (1979)

  8. Coffman, C.V., Duffin, R.J.: On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle. Adv. Appl. Math. 1(4), 373–389 (1980)

    Article  MathSciNet  Google Scholar 

  9. Coffman, C.V., Duffin, R.J.: On the fundamental eigenfunctions of a clamped punctured disk. Adv. Appl. Math. 13, 142–151 (1992)

    Article  MathSciNet  Google Scholar 

  10. Courant, R.: Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7, 1–57 (1920)

    Article  MathSciNet  Google Scholar 

  11. Dall’Acqua, A., Sweers, G.: The clamped plate equation on the Lima çon. Ann. Mat. Pura Appl. (4) 184, 361–374 (2005)

    Article  MathSciNet  Google Scholar 

  12. Daners, D., Glück, J., Kennedy, J.B.: Eventually and asymptotically positive semigroups on Banach lattices. J. Differ. Equ. 261, 2607–2649 (2016)

    Article  MathSciNet  Google Scholar 

  13. Duffin, R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253–258 (1949)

    Article  MathSciNet  Google Scholar 

  14. Duffin, R.J., Shaffer, D.H.: On the modes of vibration of a ring-shaped plate. Bull. Am. Meteorol. Soc. 58, 652 (1952)

    Google Scholar 

  15. Engliš, M., Peetre, J.: A Green’s function for the annulus. Ann. Mat. Pura Appl. (4) 171, 313–377 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, pp. 169–173. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Gazzola, F., Grunau, H.-C.: Eventual local positivity for a biharmonic heat equation in \({\mathbb{R}}^{n}\). Discrete Contin. Dyn. Syst. Ser. S 1, 83–87 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, Berlin (2010)

    Book  Google Scholar 

  19. Grunau, H.-C., Robert, F., Sweers, G.: Optimal estimates from below for biharmonic Green functions. Proc. Am. Math. Soc. 139, 2151–2161 (2011)

    Article  MathSciNet  Google Scholar 

  20. Grunau, H.-C., Romani, G.: Unexpected differences between fundamental solutions of general higher-order elliptic operators and of products of second-order operators. Preprint. arXiv:1902.06503

  21. Grunau, H.-C., Sweers, G.: Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions. Math. Nachr. 179, 89–102 (1996)

    Article  MathSciNet  Google Scholar 

  22. Grunau, H.-C., Sweers, G.: Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions. Math. Ann. 307, 589–626 (1997)

    Article  MathSciNet  Google Scholar 

  23. Grunau, H.-C., Sweers, G.: Sign change for the Green function and the first eigenfunction of equations of clamped-plate type. Arch. Rat. Mech. Anal. 150, 179–190 (1999)

    Article  MathSciNet  Google Scholar 

  24. Grunau, H.-C., Sweers, G.: Optimal conditions for anti-maximum principles. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30, 499–513 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Grunau, H.-C., Sweers, G.: Sharp estimates for iterated Green functions. Proc. R. Soc. Edinb. Sect. A 132(1), 91–120 (2002)

    Article  MathSciNet  Google Scholar 

  26. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibrie des plaques élastiques encastrées. In: Œuvres de Jacques Hadamard, Tomes II, pp. 515–641, Centre National de la Recherche Scientifique, Paris 1968, reprint of: Mémoire couronne par l’Académie des Sciences (Prix Vaillant), Mém. Sav. Étrang. 33 (1907)

  27. Hadamard, J.: Sur certains cas intéressants du problème biharmonique. In: Œuvres de Jaques Hadamard, Tome III, pp. 1297–1299, Centre National de la Recherche Scientifique: Paris, 1968, reprint of: Atti IVe Congr. Intern. Mat. Rome 12–14 (1908)

  28. Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.) 3(1(23)), 3–95 (1948) (translation in: Amer. Math. Soc. Translation 1950, (1950). no. 26)

  29. Levine, H.A., Protter, M.H.: Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity. Math. Methods Appl. Sci. 7, 210–222 (1985)

    Article  MathSciNet  Google Scholar 

  30. Nakai, M., Sario, L.: Green’s function of the clamped punktured disk. J. Aust. Math. Soc. 20(Series B), 175–181 (1978)

    MATH  Google Scholar 

  31. Pulst, L.: Dominance of positivity of the Green’s function associated to a perturbed polyharmonic dirichlet boundary value problem by pointwise estimates. Dissertation (2014). https://doi.org/10.25673/4208

  32. Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign? In Electron. J. Differ. Equ. Conf. 06, 285–296 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Sweers, G.: Bilaplace eigenfunctions compared with Laplace eigenfunctions in some special cases. In: Buskes, G., et al. (eds.) Positivity and Noncommutative Analysis. Birkhäuser, London (2019)

    Google Scholar 

  34. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  Google Scholar 

  35. Yosida, K.: Functional Analysis. Sixth Edition. Grundlehren der Mathematischen Wissenschaften, vol. 123. Springer, Berlin (1980)

    Google Scholar 

  36. Zhongxin, Zhao: Green function for Schrödinger operator and conditioned Feynman–Kac gauge. J. Math. Anal. Appl. 116, 309–334 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sweers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Computation of the first eigenfunctions for the spherical shell

Computation of the first eigenfunctions for the spherical shell

As for the annulus in 2D the first eigenvalues appear as zeroes of explicit transcendental functions as follows. The eigenfunction \(\varphi _{{\textcircled {1}}}:\Omega _{\varepsilon }\subset {\mathbb {R}}^{3}\rightarrow {\mathbb {R}}\) is radially symmetric. Therefore, we write \(\varphi _{{\textcircled {1}} }(x)={\widetilde{\varphi }}_{{\textcircled {1}}}(|x|)={\widetilde{\varphi }}_{ {\textcircled {1}}}(r)\) and find that the eigenfunction is of the form

$$\begin{aligned} {\widetilde{\varphi }}_{{\textcircled {1}}}(r)=c_{1}\tfrac{\exp (\root 4 \of { \lambda _{{\textcircled {1}}}}r)}{\root 4 \of {\lambda _{{\textcircled {1}}}}r} +c_{2}\tfrac{\exp (-\,\root 4 \of {\lambda _{{\textcircled {1}}}}r)}{\root 4 \of { \lambda _{{\textcircled {1}}}}r}+c_{3}\tfrac{\sin \left( \root 4 \of {\lambda _{ {\textcircled {1}}}}r\right) }{\root 4 \of {\lambda _{{\textcircled {1}}}}r}+c_{4} \tfrac{\cos \left( \root 4 \of {\lambda _{{\textcircled {1}}}}r\right) }{\root 4 \of { \lambda _{{\textcircled {1}}}}}. \end{aligned}$$

Setting \(u_{1}(t)=\frac{\exp (t)}{t}\), \(u_{2}(t)=\frac{\exp (-\,t)}{t}\), \( u_{3}(t)=\frac{\sin (t)}{t}\) and \(u_{4}(t)=\frac{\cos (t)}{t}\) one obtains \(\lambda _{{\textcircled {1}}}\) as the first zero of

$$\begin{aligned} \lambda&\mapsto \det \begin{pmatrix} u_{1}(\varepsilon \root 4 \of {\lambda }) &{} u_{2}(\varepsilon \root 4 \of {\lambda }) &{} u_{3}(\varepsilon \root 4 \of {\lambda }) &{} u_{4}(\varepsilon \root 4 \of {\lambda }) \\ u_{1}^{\prime }(\varepsilon \root 4 \of {\lambda }) &{} u_{2}^{\prime }(\varepsilon \root 4 \of {\lambda }) &{} u_{3}^{\prime }(\varepsilon \root 4 \of {\lambda }) &{} u_{4}^{\prime }(\varepsilon \root 4 \of {\lambda }) \\ u_{1}(\root 4 \of {\lambda }) &{} u_{2}(\root 4 \of {\lambda }) &{} u_{3}(\root 4 \of { \lambda }) &{} u_{4}(\root 4 \of {\lambda }) \\ u_{1}^{\prime }(\root 4 \of {\lambda }) &{} u_{2}^{\prime }(\root 4 \of {\lambda }) &{} u_{3}^{\prime }(\root 4 \of {\lambda }) &{} u_{4}^{\prime }(\root 4 \of {\lambda }) \end{pmatrix} \\&=\tfrac{4}{\varepsilon ^{2}\lambda }\left( 1-\cosh \left( \left( 1-\varepsilon \right) \root 4 \of {\lambda }\right) \cos \left( \left( 1-\varepsilon \right) \root 4 \of {\lambda }\right) \right) . \end{aligned}$$

Assuming that \(\varphi _{{\textcircled {2}}}:\Omega _{\varepsilon }\subset {\mathbb {R}}^{3}\rightarrow {\mathbb {R}}\) can be written as \(\varphi _{{\textcircled {2}}}(x)=x_{1}\widetilde{\varphi }(\left| x\right| )\) we find that \({\widetilde{\varphi }}\) is of the form

$$\begin{aligned} {\widetilde{\varphi }}(r)&=c_{5}\frac{\left( 1-\root 4 \of {\lambda _{{\textcircled {2}}}}r\right) \exp \left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) }{\left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) ^{3}}+c_{6}\frac{\left( 1+\root 4 \of {\lambda _{{\textcircled {2}}}}r\right) \exp \left( -\,\root 4 \of {\lambda _{{\textcircled {2}}}}r\right) }{\left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) ^{3}} \\&\quad +c_{7}\frac{\sin \left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) -\root 4 \of { \lambda _{{\textcircled {2}}}}r\cos \left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) }{\left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) ^{3}} \\&\quad +c_{8}\frac{\cos \left( \root 4 \of { \lambda _{{\textcircled {2}}}}r\right) +\root 4 \of {\lambda _{{\textcircled {2}}}}r\sin \left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) }{\left( \root 4 \of {\lambda _{{\textcircled {2}}}}r\right) ^{3}}. \end{aligned}$$

As above we define \(v_{1}(t)=\frac{(1-t)\exp (t)}{t^{3}}\), \(v_{2}(t)=\frac{ (1+t)\exp (-\,t)}{t^{3}}\), \(v_{3}(t)=\frac{\sin (t)-t\cos (t)}{t^{3}}\) and \( v_{4}(t)=\frac{\cos (t)+t\sin (t)}{t^{3}}\). The eigenvalue \(\lambda _{{\textcircled {2}}}\) is the first zero of the function one obtains by replacing \( u_{i}\) by \(v_{i}\) in the determinant above. Numerical approximations of \( \lambda _{{\textcircled {1}}}\) and of \(\lambda _{{\textcircled {2}}}\) as a function of \(\varepsilon \) show that for all \(\varepsilon \in \left( 0,0.3\right) \):

$$\begin{aligned} \lambda _{1,\varepsilon }=\lambda _{{\textcircled {1}}}<\lambda _{{\textcircled {2}}}=\lambda _{2,\varepsilon }. \end{aligned}$$

The sketches of \(\varepsilon \mapsto \lambda _{i,\varepsilon }\) with \(i\in \{1,2\}\) are found in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnieders, I., Sweers, G. A biharmonic converse to Krein–Rutman: a maximum principle near a positive eigenfunction. Positivity 24, 677–710 (2020). https://doi.org/10.1007/s11117-019-00702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-019-00702-3

Keywords

Mathematics Subject Classification

Navigation