Skip to main content

Advertisement

Log in

Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A multilayer Al5052–Cu composite is prepared by accumulative roll bonding (ARB) and the microstructure and mechanical properties are evaluated using optical microscopy, scanning electron microscopy (SEM), tensile tests, and micro-hardness measurements. The results show that the thickness (1000 μm) of copper layers of the initial sample is reduced to ~7 μm after the fifth ARB cycle, while the thickness of Al layer increases. With increasing number of ARB cycles, the microhardness of both aluminum and copper layers is significantly increased. The tensile strength of the sandwich is enhanced continiousely, and the maximum value of 566.5 MPa is achieved. The high strength of 566.5 MPa and ductility of 9.61% is achieved, which is ~47 and ~21% higher, than the maximum values found out in the publications. The investigation of the tensile fracture of surfaces during ARB indicates that the increase in ARB cycles changes the fracture mechanism to shear ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. R. Jamaati, M. R. Toroghinejad, and A. Najafizadeh, “An alternative method of processing MMCs by CAR process,” Mater. Sci. Eng.: A, 527, Nos. 10–11, 2720–2724 (2010).

    Article  Google Scholar 

  2. Yu. A. Shishkina, G. A. Baglyuk, V. S. Kurikhin, and D. G. Verbylo, “Effect of the deformation scheme on the structure and properties of hot-forged aluminum-matrix composites,” Powder Metall. Met. Ceram., 55, Nos. 1–2, 5–11 (2016).

    Article  Google Scholar 

  3. D. Lee and B. Kim, “Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application,” Mater. Letters, 58, Nos. 3–4, 378–383 (2004).

    Article  Google Scholar 

  4. I. Estrada-Guel, C. Carreño-Gallardo, D. Mendoza-Ruiz, et al., “Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying,”, J. Alloys Comp., 483, Nos. 1–2, 173–177 (2009).

    Article  Google Scholar 

  5. J. Lee, D. Bae, W. Chung, et al., “Effect of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets,” J. Mater. Proces. Technol., 187–188, 546–549 (2007).

    Article  Google Scholar 

  6. R. Nunes, J. H. Adams, M. Ammons, et al., Properties and Selection: Nonferrous Alloys and Special- Purpose Materials: ASM Handbook, Vol. 2, ASM International, USA (1990), p. 3470.

    Google Scholar 

  7. P. Shingu, K. Ishihara, A. Otsuki, and I. Daigo, “Nano-scaled multilayer bulk materials manufactured by repeated pressing and rolling in the Cu–Fe system,” Mater. Sci. Eng.: A, 304–306, 399–402 (2001).

    Article  Google Scholar 

  8. G. Faraji and H. Kim, “Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes,” Mater. Sci. Technol., 33, No. 8, 905–923 (2016).

    Article  Google Scholar 

  9. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progress Mater. Sci., 45, No. 2, 103–189 (2000).

    Article  Google Scholar 

  10. V. Segal, “Materials processing by simple shear,” Mater. Sci. Eng.: A, 197, No. 2, 157–164 (1995).

    Article  Google Scholar 

  11. M. Mesbah, G. Faraji, and A. Bushroa, “Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP),” Mater. Sci. Eng.: A, 590, 289–294 (2014).

    Article  Google Scholar 

  12. M. Javidikia and R. Hashemi, “Analysis and simulation of parallel tubular channel angular pressing of Al 5083 tube,” Transac. Ind. Ins. Metals, 70, No. 10, 2547–2553 (2017).

    Article  Google Scholar 

  13. G. Sakai, Z. Horita, and T. G. Langdon, “Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion,” Mater. Sci. Eng.: A, 393, Nos. 1–2, 344–351 (2005).

    Article  Google Scholar 

  14. M. Eskandarzade, A. Masoumi, G. Faraji, et al., J. Alloys Comp. (2016).

  15. Y. Saito, N. Tsuji, H. Utsunomiya, et al., “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process,” Scripta Mater., 39, No. 9, 1221–1227 (1998).

    Article  Google Scholar 

  16. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, “Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding,” Mater. Sci. Eng.: A, 497, Nos. 1– 2, 132–138 (2008).

    Article  Google Scholar 

  17. R. Jamaati and M. R. Toroghinejad, “Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding,” Mater. Sci. Eng.: A, 527, Nos. 16–17, 4146–4151 (2010).

    Article  Google Scholar 

  18. R. Jamaati, S. Amirkhanlou, M. R. Toroghinejad, and B. Niroumand, “Significant improvement of semisolid microstructure and mechanical properties of A356 alloy by ARB process,” Mater. Sci. Eng.: A, 528, No. 6, 2495–2501 (2011).

    Article  Google Scholar 

  19. G. Min, J.-M. Lee, S.-B. Kang, and H.-W. Kim, “Evolution of microstructure for multilayerd Al/Ni composites by accumulative roll bonding process,” Mater. Letters, 60, No. 27, 3255–3259 (2006).

    Article  Google Scholar 

  20. V. Y. Mehr, M. R. Toroghinejad, and A. Rezaeian, “Mechanical properties and microstructure evolutions of multilayer Al–Cu composites produced by accumulative roll bonding process and subsequent annealing,” Mater. Sci. Eng.: A, 601, 40–47 (2014).

    Article  Google Scholar 

  21. M. Eizadjou, A. K. Talachi, H. D. Manesh, et al., “Investigation of structure and mechanical properties of multilayer Al/Cu composite produced by accumulative roll bonding (ARB) process,” Comp. Sci. Technol., 68, No. 9, 2003–2009 (2008).

    Article  Google Scholar 

  22. R. N. Dehsorkhi, F. Qods, and M. Tajally, “Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process,” Mater. Sci. Eng.: A, 530, 63–72 (2011).

    Article  Google Scholar 

  23. K. Wu, H. Chang, E. Maawad, et al., “Microstructure and mechanical properties of the Mg/Al laminated composite fabricated byaccumulative roll bonding (ARB),” Mater. Sci. Eng.: A, 527, Nos. 13–14, 3073–3078 (2010).

    Article  Google Scholar 

  24. A. Shabani, M. R. Toroghinejad, and A. Shafyei, “Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties,” Mater. Sci. Eng.: A, 558, 386–393 (2012).

    Article  Google Scholar 

  25. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process,” Acta Mater, 47, No. 2, 579–583 (1999).

    Article  Google Scholar 

  26. M. Tayyebi and B. Eghbali, “Study on the manufacture and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding,” Mater. Sci. Eng.: A, 559, 759–764 (2013).

    Article  Google Scholar 

  27. M. Reihanian and M. Naseri, “An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer,” Mater. Design, 89, 1213–1222 (2016).

    Article  Google Scholar 

  28. A. Mozaffari, H. D. Manesh, and K. Janghorban, “Evaluation of mechanical properties and structure of multilayer Al/Ni composites produced by accumulative roll bonding (ARB) process,” J. Alloys Comp., 489, No. 1, 103–109 (2010).

    Article  Google Scholar 

  29. H. Abdolvand, G. Faraji, M. B. Givi, et al., “Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation,” Met. Mater. Int., 21, No. 6, 1068–1073 (2015).

    Article  Google Scholar 

  30. G. Faraji, M. Mashhadi, A. Bushroa, and A. Babaei, “TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process,” Mater. Sci. Eng.: A, 563, 193–198 (2013).

    Article  Google Scholar 

  31. M. Alizadeh and M. Samiei, “Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mevhanical properties,” Mater. Design, 56, 680–684 (2014).

    Article  Google Scholar 

  32. M. Sedighi, M. H. Vini, and P. Farhadipour, “Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding,” Powder Metall. Met. Ceram., 55, 413–418 (2016).

    Article  Google Scholar 

  33. M. H. Vini, M. Sedighi, and M. Mondali, “Mechanical properties, bond strength, and microstructure evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB),” Int. J. Mater. Research, 108, No. 1, 53–59 (2017).

    Article  Google Scholar 

  34. V. Y. Mehr, A. Rezaeian, and M. R. Toroghinejad, “Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite,” Mater. Design, 70, 53–59 (2015).

    Article  Google Scholar 

  35. A. Pineau, A. A. Benzerga, and T. Pardoen, “Failure of metals I: Brittle and ductile fracture,” Acta Mater., 107, 424–483 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hashemi.

Additional information

Published in Poroshkova Metallurgiya, Vol. 57, Nos. 3–4 (520), pp. 23–34, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatabadi, D., Tayyebi, M., Hashemi, R. et al. Evaluation of Microstructure and Mechanical Properties of Multilayer Al5052–Cu Composite Produced by Accmulative Roll Bonding. Powder Metall Met Ceram 57, 144–153 (2018). https://doi.org/10.1007/s11106-018-9962-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9962-4

Keywords

Navigation