Skip to main content
Log in

Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, ultrafine-grained (UFG) Cu-Zn tubes were processed via multi-pass parallel tubular channel angular pressing (PTCAP) process, and microstructure, mechanical properties along the axial and peripheral directions were evaluated. Mechanical characterizations were done using uniaxial tension test along both the axial and peripheral directions and biaxial bulging tests. The hydro-bulging test was used to measure the bursting pressure of UFG tubes. The results present that the UFG and nanostructured tubes achieved form PTCAP process exhibit excellent pressure bearing capacity in comparison with the coarse-grained (CG) counterparts. Also, the bursting pressure of the UFG tube was remarkably increased to 93 MPa just after the first pass of PTCAP process from 43.3 MPa for the CG one. It was 88 MPa and 81.3 MPa for second and third passes PTCAP processed tube. Important reasons for this behavior were both significant grain refinement and severe mechanical anisotropy results from texture evolution after PTCAP processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ahmetoglu and T. Altan, J. Mater. Process. Tech. 98, 25 (2000).

    Article  Google Scholar 

  2. M. Koç and T. Altan, J. Mater. Process. Tech. 108, 384 (2001).

    Article  Google Scholar 

  3. L. H. Lang, Z. R. Wang, D. C. Kang, S. J. Yuan, S. H. Zhang, J. Danckert, and K. B. Nielsen, J. Mater. Process. Tech. 151, 165 (2004).

    Article  Google Scholar 

  4. B. J. Mac Donald and M. S. J. Hashmi, J. Mater. Process. Tech. 120, 341 (2002).

    Article  Google Scholar 

  5. Y. Aue-U-Lan, G. Ngaile, and T. Altan, J. Mater. Process. Tech. 146, 137 (2004).

    Article  Google Scholar 

  6. G. T. Kridli, L. Bao, P. K. Mallick, and Y. Tian, J. Mater. Process. Tech. 133, 287 (2003).

    Article  Google Scholar 

  7. M. Atkinson, Int. J. Mech. Sci. 39, 761 (1997).

    Article  Google Scholar 

  8. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  9. G. Faraji, M. M. Mashhadi, and H. S. Kim, Mater. Lett. 65, 3009 (2011).

    Article  Google Scholar 

  10. A. Babaei, M.M. Mashhadi, and H. Jafarzadeh, Mat. Sci. Eng A-Struct, 598, 1 (2014).

    Article  Google Scholar 

  11. L. S. Tóth, M. Arzaghi, J. J. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion, Scripta Mater. 60, 175 (2009).

    Article  Google Scholar 

  12. G. Faraji, A. Babaei, M. M. Mashhadi, and K. Abrinia, Mater. Lett. 77, 82 (2012).

    Article  Google Scholar 

  13. N. Svensson, J. Appl. Mech. 25, 89 (1958).

    Google Scholar 

  14. J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, p.17, Butterworth-Heinemann, Oxford (2002).

    Google Scholar 

  15. J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, Butterworth-Heinemann (2002).

    Google Scholar 

  16. Y.-L. Lin, Z.-B. He, S.-J. Yuan, and J. Wu, T. Nonferr. Metal. Soc. 21, 851 (2011).

    Article  Google Scholar 

  17. G. Faraji, M. M. Mashhadi, and H. S. Kim, Mat. Sci. Eng A-Struct, 528, 4312 (2011).

    Article  Google Scholar 

  18. G. Faraji, M. M. Mashhadi, A. R. Bushroa, and A. Babaei, Mat. Sci. Eng A-Struct, 563, 193 (2013).

    Article  Google Scholar 

  19. A. V. Nagasekhar, T. Rajkumar, D. Stephan, Y. Tick-Hon, R. K. Guduru, Mat. Sci. Eng A-Struct, 524, 204 (2009).

    Article  Google Scholar 

  20. S. Pasebani and M. R. Toroghinejad, Mat. Sci. Eng A-Struct, 527, 491 (2010).

    Article  Google Scholar 

  21. D. H. Shin, C. W. Seo, J. Kim, K.-T. Park, and W. Y. Choo, Scripta Mater. 42, 695 (2000).

    Article  Google Scholar 

  22. V. Tavakkoli, M. Afrasiab, G. Faraji, and M. M. Mashhadi, Mat. Sci. Eng A-Struct, 625, 50 (2015).

    Article  Google Scholar 

  23. W. J. Kim, C. W. An, Y. S. Kim, and S. I. Hong, Scripta Mater. 47, 39 (2002).

    Article  Google Scholar 

  24. L. Jiang, J.J. Jonas, K. Boyle, and P. Martin, Mat. Sci. Eng A-Struct, 492, 68 (2008).

    Article  Google Scholar 

  25. C. Gu, J. Lian, Z. Jiang, and Q. Jiang, Scripta Mater. 54, 579 (2006).

    Article  Google Scholar 

  26. F. Salimyanfard, M. R. Toroghinejad, F. Ashrafizadeh, and M. Jafari, Mat. Sci. Eng A-Struct, 528, 5348 (2011).

    Article  Google Scholar 

  27. M. Imaninejad, G. Subhash, and A. Loukus, J. Mater. Process. Tech. 147, 247 (2004).

    Article  Google Scholar 

  28. M. Koç and T. Altan, International Journal of Machine Tools and Manufacture, 42, 123 (2002).

    Article  Google Scholar 

  29. T. Minoda, K. Shibue, and H. Yoshida, Journal-Japan Institute of Light Metals, 54, 110 (2004).

    Article  Google Scholar 

  30. E. J. Pavlina, C. J. Van Tyne, and K. Hertel, J. Mater. Process. Tech. 201, 242 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolvand, H., Faraji, G., Givi, M.K.B. et al. Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation. Met. Mater. Int. 21, 1068–1073 (2015). https://doi.org/10.1007/s12540-015-5261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5261-5

Keywords

Navigation