Skip to main content

Advertisement

Log in

The Chilli Veinal Mottle Virus Regulates Expression of the Tobacco Mosaic Virus Resistance Gene N and Jasmonic Acid/Ethylene Signaling Is Essential for Systemic Resistance Against Chilli Veinal Mottle Virus in Tobacco

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Genetic, physiological, and molecular analyses have revealed that the stress-related phytohormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are known to participate in defense responses to mitigate biotic stress in plants. Recent evidence suggests that N-gene (a typical resistance gene) transcription is upregulated by Tobacco mosaic virus (TMV) infection, which is specifically a TMV-related phenomenon. In this study, we investigated N-gene transcription in tobaccoNN infected with Chilli veinal mottle virus (ChiVMV). Furthermore, we used a virus-induced gene-silencing-based genetics approach to investigate the function of SA, JA, and ET biosynthesis or signaling genes in systemic resistance to ChiVMV. Northern blot and qRT-PCR analysis indicate that N-gene transcription is stimulated by ChiVMV. Hormone measurements demonstrate that JA and ET increase rapidly during the early stages of ChiVMV infection, whereas SA increases slightly at later stages. JA and ET biosynthetic, signaling, and marker genes are significantly activated after ChiVMV inoculation, whereas SA biosynthetic, signaling, and marker genes are increased slightly. Silencing of JA, ET biosynthetic and signaling genes strongly increase the plants’ susceptibility to ChiVMV, whereas silencing of SA biosynthetic and signaling genes only partly compromise systemic resistance. Extensive ROS accumulate in JA, ET biosynthetic and signaling gene-silenced plants after ChiVMV infection, whereas only slight ROS produce in SA biosynthetic and signaling gene-silenced plants. Taken together, our results indicate that N-gene transcription is upregulated by ChiVMV infection, and the JA/ET pathways play an important role in plant systemic resistance against ChiVMV, whereas the SA pathway is only minorly involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ChiVMV:

Chilli veinal mottle virus

DAB:

3,3′-Diaminobenzidine

ET:

Ethylene

JA:

Jasmonic acid

NBS:

Nucleotide-binding site

NBT:

Nitro blue tetrazolium

PCD:

Programmed cell death

ROS:

Reactive oxygen species

SA:

Salicylic acid

TMV:

Tobacco mosaic virus

VIGS:

Virus-induced gene-silencing

References

  • An CF, Mou ZL (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang YH, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L (2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70:79–102

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhang ZW, Xue LW, Du JB, Shang J, Xu F, Yuan S, Lin HH (2009) Lack of salicylic acid in NahG Arabidopsis protects plants against moderate salt stress. Z Naturforsch 64c:231–238

    Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83:1054–1062

    Article  CAS  Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dinesh-Kumar SP, Tham WH, Baker B (2000) The structure–function analysis of the tobacco mosaic resistance gene N. Proc Natl Acad Sci U S A 97:14789–14794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J 18:67–75

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Grant M, Jones J (2009) Hormone (dis) harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  • Halim V, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O, Scheel D, Rosahl S (2009) PAMP-induced defense responses in potato required both salicylic acid and jasmonic acid. Plant J 57:230–242

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  CAS  PubMed  Google Scholar 

  • He K, Gou XP, Yuan T, Lin HH, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Heidrich K, Blanvillain-Baufumé S, Parker JE (2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15:385–391

    Article  CAS  PubMed  Google Scholar 

  • Holmes FO (1938) Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28:553–561

    Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    Article  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J 15:675–684

    Article  CAS  PubMed  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy M, Edelbaum O, Sela I (2004) Tobacco mosaic virus regulates the expression of its of own resistance gene N. Plant Physiol 135:2392–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YL, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WARY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800–809

    Article  CAS  PubMed  Google Scholar 

  • Liu GS, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Liu XL, Dai LY, Wang GL (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics 34:765–776

    Article  PubMed  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Marathe R, Anandalakshmi R, Liu YL, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3:167–172

    Article  CAS  PubMed  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25:79–82

    Article  CAS  PubMed  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant-Microbe Interact 10:709–715

    Article  CAS  Google Scholar 

  • Pan QL, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Pan XQ, Welti R, Wang XM (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protoc 5:986–992

    Article  CAS  PubMed  Google Scholar 

  • Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates—signals in plant–microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95:588–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodoni B (2009) The role of plant biosecurity in preventing and controlling emerging plant virus disease epidemics. Virus Res 141:150–157

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS (2012) Glycolate oxidase modulates reactive oxygen species–mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tada T, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y, Sukamto, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the tobacco mosaic virus-induced hypersensitive response and during leaf and flower-senescence. Plant Mol Biol 54:613–622

    Article  CAS  PubMed  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  Google Scholar 

  • van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711–8716

    Article  PubMed Central  PubMed  Google Scholar 

  • Von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Wangdi T, Uppalapati SR, Nagaraj S, Ryu CM, Bender CL, Mysore KS (2010) A virus-induced gene silencing screen identifies a role for thylakoid formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis. Plant Physiol 152:281–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 93:8776–8781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  CAS  PubMed  Google Scholar 

  • Xi DH, Yang H, Jiang Y, Xu MY, Shang J, Zhang ZW, Cheng SY, Sang LS, Lin HH (2010) Interference between Tobacco necrosis virus and Turnip crinkle virus in Nicotiana benthamiana. J Phytopathol 158:263–269

    Article  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Yuan S, Zhang DW, Lv X, Lin HH (2012) The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. J Exp Bot 63:5705–5716

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Oh Y, Li HY, Baldwin IT, Galis I (2012) Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae. Plant Physiol 160:1453–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong GV, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zhang P, Meng YF, Xu F, Zhang DW, Cheng J, Lin HH, Xi DH (2013) Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 237:77–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jian-Zhong Liu (Zhejiang Normal University, Jinhua, China) for providing the Nicotiana tabacum (tobacco) cv. Samsun NN (tobaccoNN) and the N. tabacum cv. Petite Havana SR1, termed SR1 nn (tobacconn) seeds. This work was supported by the National Nature Science Foundation of China (91017004, 31070210, 31171835, and 31270290), Doctoral Foundation of the Ministry of Education (20110181110059 and 20120181130008), Sichuan and Chengdu Nature Science Foundation (2010JQ0080, 11DXYB097JH-027, and 2012JY0078) and Fundamental Research Funds for the Central Universities (2011SCU04B34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hui Lin.

Additional information

F. Zhu and D.-H. Xi contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, F., Xi, DH., Deng, XG. et al. The Chilli Veinal Mottle Virus Regulates Expression of the Tobacco Mosaic Virus Resistance Gene N and Jasmonic Acid/Ethylene Signaling Is Essential for Systemic Resistance Against Chilli Veinal Mottle Virus in Tobacco. Plant Mol Biol Rep 32, 382–394 (2014). https://doi.org/10.1007/s11105-013-0654-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0654-4

Keywords

Navigation