Skip to main content
Log in

Proteomic Changes in Newly Synthesized Brassica napus Allotetraploids and Their Early Generations

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Polyploidy is a prominent process in higher plants and is often described as a genomic shock that may induce stress and defense responses. The Brassica napus allotetraploid model was chosen to investigate the proteomic modifications that occur during allopolyploid formation. Large-scale analysis of the proteome from the leaves of B. napus was performed and compared with the homozygous diploid progenitors, Brassica rapa and Brassica oleracea, and among the proteomic changes in B. napus in the early generations (F1–F4). The abundance of all these differentially expressed proteins in the F1 generation differed from that of the corresponding proteins expressed in its progenitors, some of which relatively deviated from mid-parent predictions, exhibiting somewhat non-additive expression repatterning. Proteomic changes in the resynthesized B. napus from the first to the fourth generations were detected, which indicated that gene silencing was a permanent phenomenon and it could be reactivated at any moment. Although leaf proteins were extensively modified in synthetic B. napus, the distribution of the “housekeeping” proteins was not disturbed. Moreover, no evidence of chaos or large disorder was observed after the merging of the two genomes. Instead, a novel order quickly developed, which might evolve in further generations of synthetic B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543

    Article  PubMed  CAS  Google Scholar 

  • Albertin W, Balliau T, Brabant P, Chevre AM, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113

    Article  PubMed  CAS  Google Scholar 

  • Anja S, Marco B, Rüdiger H (2002) Overexpression of the potential herbicide target sedoheptulose-1, 7-bisphosphatase from Spinacia oleracea in transgenic tobacco. Mol Breed 9:53–61

    Article  Google Scholar 

  • Ashby E (1930) Studies on the inheritance of physiological characters. I. A physiological investigation of the nature of hybrid vigour in maize. Ann Bot 44:457–467

    Google Scholar 

  • Axesson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  • Buggs RJA, Doust AN, Tate JA, Koh J, Soltis K, Feltus FA, Paterson AH, Soltis PS (2009) Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103:73–81

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Ni ZF (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    Article  PubMed  Google Scholar 

  • Cui LY (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  • Ding C, You J, Liu Z, Rehmani MIA, Wang S, Li G, Wang Q, Ding Y (2011) Proteomic analysis of low nitrogen stress-responsive proteins in roots of rice. Plant Mol Biol Report. doi:10.1007/s11105-010-0268-z

    Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires J, Iniguez-Luy F, Leon E, Osbron TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhao Y, Li T, Ren C, Liu Y, Wang M (2010) Cloning and characterization of a G protein β subunit gene responsive to plant hormones and abiotic stresses in Brassica napus. Plant Mol Biol Report 28:450–459

    Article  CAS  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Brown B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845

    Article  PubMed  CAS  Google Scholar 

  • Joly S, Rauscher JT, Sherman-Broyles SL, Brown AHD, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homoeologous 18S–5.8S–26S nuclear ribosomal genes in natural and artificial Glycine allopolyploids. Mol Biol Evol 21:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Ge CL, Fang XP, Snowdon RJ, Wang YP (2010) Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics 37:333–340

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Li X, Xiang C, Wang H, Song J, Zhi H (2011) Genetic diversity of radish (Raphanus sativus L.) germplasm resources revealed by AFLP and RAPD markers. Plant Mol Biol Report 29:217–223

    Article  Google Scholar 

  • Lefebvre-Legendre L, Vaillier J, Benabdelhak H, Velours J, Slonimski PP, Rago JP (2001) Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F1-ATPase in heat stress conditions. J Biol Chem 276:6789–6796

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate JA, Matyasek R, Srubarova H (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS ONE 3:e3353

    Article  PubMed  Google Scholar 

  • Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah C (2005) Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by integration of a cysteine in the N terminus of the small subunit. Plant Physiol 139:1625–1634

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Guan PC (1998) Studies on the taxonomy of Chinese kale (B. alboglabra). J South China Agric Univ 19:82–86

    Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic change. Genome 44:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49:950–958

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot (Lond) 94:481–495

    Article  CAS  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  PubMed  CAS  Google Scholar 

  • Mechin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O (2004) A two-dimensional proteome map of maize endosperm. Phytochem 65:1609–1618

    Article  CAS  Google Scholar 

  • Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391

    Article  PubMed  CAS  Google Scholar 

  • Muller-Rober BT, Kossmann J, Hannah LC (1990) One of two different ADP-glucose pyrophosphorylase genes responds strongly to elevated levels of sucrose. Mol Gen Genet 224:136–146

    Article  PubMed  CAS  Google Scholar 

  • Muller-Roeber B, Sonnewald U, Willmizer L (1992) Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber-storage protein genes. EMBO J 11:1229–1238

    Google Scholar 

  • Osborn TC, Chris PJ, Birchler JA, Auger DL, Chen J (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pires JC, Zhao JW, Schranz ME, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized polyploids (Brassica). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  PubMed  CAS  Google Scholar 

  • Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Referecne gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Report 28:597–604

    Article  CAS  Google Scholar 

  • Quiros CF (1999) Genome structure and mapping. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Science, Amsterdam, pp 217–246

    Chapter  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:911–914

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Article  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Pamphilis CWD, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Stebbins GL (1971) Chromosome evolution in higher plants. Addison-Wesley, London, UK

    Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  PubMed  CAS  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lübberstedt T (2007) Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63:21–34

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    Article  PubMed  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol 4:298–313

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Li C, Yao Y (2009) Proteomics analyiss of drought stress-responsive proteins in Hippophae rhamnoides L. Plant Mol Biol Report 27:153–161

    Article  CAS  Google Scholar 

  • Yang B, Rahman MH, Liang Y, Shah S, Kav NNV (2010) Characterization of defence signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Report 28:253–263

    Article  CAS  Google Scholar 

  • Zhang X, Yin D, Ma C, Fu T (2011) Phylogenetic analysis of S-locus genes reveals the complicated evolution relationship of S haplotypes in Brassica. Plant Mol Biol Report. doi:10.1007/s11105-010-0251-8

    Google Scholar 

Download references

Acknowledgments

This work was supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the NSFC Project (30671166, 30971812), Program of International S&T Cooperation of China (1021), and Scientific Research Foundation for the Introduction of Talent of Anhui Polytechnic University (2010YQQOO7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F., Mao, S., Jiang, J. et al. Proteomic Changes in Newly Synthesized Brassica napus Allotetraploids and Their Early Generations. Plant Mol Biol Rep 29, 927–935 (2011). https://doi.org/10.1007/s11105-011-0301-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0301-x

Keywords

Navigation