Skip to main content

Advertisement

Log in

Proteomic analysis of early germs with high-oil and normal inbred lines in maize

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High-oil maize as a product of long-term selection provides a unique resource for functional genomics. In this study, the abundant soluble proteins of early developing germs from high-oil and normal lines of maize were compared using two-dimensional gel electrophoresis (2-DGE) in combination with mass spectrometry (MS). More than 1100 protein spots were detected on electrophoresis maps of both high-oil and normal lines by using silver staining method. A total of 83 protein spots showed significant differential expression (>two-fold change; t-test: P < 0.05) between high-oil and normal inbred lines. Twenty-seven protein spots including 25 non-redundant proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Functional categorization of these proteins was carbohydrate metabolism, cytoskeleton, protein metabolism, stress response, and lipid metabolism. Three such proteins involved in lipid metabolism, namely putative enoyl-ACP reductase (ENR), putative stearoyl-ACP desaturase (SAD) and putative acetyl-CoA C-acyltransferase (ACA), had more abundant expressions in high-oil lines than in normal. At the mRNA expression level, SAD, ENR and ACA were expressed at significantly higher levels in high-oil lines than in normal. The results demonstrated that high expressions of SAD, ENR and ACA might be associated to increasing oil concentration in high-oil maize. This study represents the first proteomic analysis of high-oil maize and contributes to a better understanding of the molecular basis of oil accumulation in high-oil maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty corns. CRC Press Inc, Boca Raton, pp 131–154

    Google Scholar 

  2. Curtis PE, Leng ER, Hageman RH (1968) Development changes in oil and fatty acid content of maize strains varying in oil content. Crop Sci 8:689–693

    CAS  Google Scholar 

  3. Dudley JW, Lambert RJ (2004) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  4. Song TM, Kong F, Li CJ, Song CJ (1999) Eleven cycles of single kernel phenotypic recurrent selection for percent oil in Zhongzong no.2 maize synthetic. J Genet Breed 53:31–35

    Google Scholar 

  5. Song XF, Song TM, Dai JR, Rocheford TR, Li JS (2004) QTL mapping of kernel oil concentration with high oil maize by SSR markers. Maydica 49:41–48

    Google Scholar 

  6. Goldman I, Rocheford TR, Dudley JW (1994) Molecular markers associated with maize kernel oil concentration in an Illinois high protein × Illinois low protein cross. Crop Sci 34:908–915

    Google Scholar 

  7. Berke T, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549

    Google Scholar 

  8. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    Article  PubMed  Google Scholar 

  9. Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark, a unique resource for 21st century genomics. Trends Plant Sci 9:358–364

    Article  PubMed  CAS  Google Scholar 

  10. Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  PubMed  CAS  Google Scholar 

  11. Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  Google Scholar 

  12. Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    Article  PubMed  CAS  Google Scholar 

  13. Lippert D, Zhuang J, Ralph S, Ellis D, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas C, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  14. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove H, Job D (2001) Proteomic analysis of Arabidopsis seed germination of priming. Plant Physiol 126:835–848

    Article  PubMed  CAS  Google Scholar 

  15. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job J (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  PubMed  CAS  Google Scholar 

  16. Carter C, Pan C, Zouhar J, Avila EL, Girke EL, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  17. Gruhler A, Schulze WX, Matthiesen R, Mann R, Jensen ON (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697–1709

    Article  PubMed  CAS  Google Scholar 

  18. Shen S, Jing Y, Kuang T (2003) Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3:527–535

    Article  PubMed  CAS  Google Scholar 

  19. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  PubMed  CAS  Google Scholar 

  20. von Zychlinski W, Kleffmann T, Krishnamurthy T, Sjolander K, Baginsky K, Gruissem W (2005) Proteome analysis of the rice etioplast metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4:1072–1084

    Article  Google Scholar 

  21. van Wijk K (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    Article  PubMed  Google Scholar 

  22. Canovas F, Dumas-Gaudot E, Recorbet G, Jorrin G, Mock H, Rossignol H (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  CAS  Google Scholar 

  23. Agrawal G, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants Part I: technologies in proteome establishment. J Chromatogr B Analyt Technol Biomed Life Sci 815:109–123

    Article  PubMed  CAS  Google Scholar 

  24. Agrawal G, Yonekura M, Iwahashi M, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants Part II: proteomes of the complex developmental stages. J Chromatogr B Analyt Technol Biomed Life Sci 815:125–136

    Article  PubMed  CAS  Google Scholar 

  25. Agrawal G, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005) System, trends and perspectives of proteomics in dicot plants Part III: unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships. J Chromatogr B Analyt Technol Biomed Life Sci 815:137–145

    Article  PubMed  CAS  Google Scholar 

  26. Agrawal G, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spec Rev 25:1–53

    Article  CAS  Google Scholar 

  27. Porubleva L, Vander VK, Kothari S, Oliver DJ, Chitnis PR (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22:1724–1738

    Article  PubMed  CAS  Google Scholar 

  28. Mechin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Negroni L, Prioul JL, Thevenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    Article  PubMed  CAS  Google Scholar 

  29. Hochholdinger F, Guo L, Schnable PS (2004) Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Plant Mol Biol 56:397–412

    Article  PubMed  CAS  Google Scholar 

  30. Hochholdinger F, Woll K, Guo L, Schanble PS (2005) The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics 5:4885–4893

    Article  PubMed  CAS  Google Scholar 

  31. Sauer M, Jakob A, Nordheim A, Hochholdinger F (2006) Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics 6:2530–2541

    Article  PubMed  CAS  Google Scholar 

  32. Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    Article  PubMed  CAS  Google Scholar 

  33. Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–3140

    Article  PubMed  CAS  Google Scholar 

  34. Hochholdinger F, Guo L, Schnable PS (2004) Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. Plant J 37:199–208

    PubMed  CAS  Google Scholar 

  35. Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–318

    Article  PubMed  CAS  Google Scholar 

  36. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  PubMed  CAS  Google Scholar 

  37. Riccardi F, Gazeau P, Vienne D, Leonardi A, Damerval C, Zivy M (1999) Protein changes in response to progressive water deficit in maize: quantitative variations and identification. Plant Physiol 117:1253–1263

    Article  Google Scholar 

  38. Torres N, Cho K, Shibato J, Kubo A, Masuo Y, Iwahashi H, Jwa N, Agrawal G, Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize. Electrophoresis 28:4369–4381

    Article  PubMed  CAS  Google Scholar 

  39. Campo S, Carrascal M, Coca M, Abian J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4:383–396

    Article  PubMed  CAS  Google Scholar 

  40. Conway TF, Johnson LF (1969) Nuclear magnetic resonance measure of oil “unsaturation” in single viable corn kernels. Science 164:827–828

    Article  PubMed  CAS  Google Scholar 

  41. Bauman LF, Conway TF, Watson SA (1963) Heritability of variations in oil content of individual corn kernels. Science 139:498–499

    Article  PubMed  CAS  Google Scholar 

  42. Sukhija PS, Palmquist DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36:1202–1206

    Article  CAS  Google Scholar 

  43. Damerval C, DeVienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  44. Jin BF, He K, Wang HX, Wang J, Zhou T, Lan Y, Hu MR, Wei KH, Yang SC, Shen BF, Zhang XM (2003) Proteomic analysis of ubiquitin-proteasome effects: insight into the function of eukaryotic initiation factor 5A. Oncogene 22:4819–4830

    Article  PubMed  CAS  Google Scholar 

  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  46. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41

    Article  PubMed  Google Scholar 

  47. Dudley JW, Lambert RJ (1992) Ninety generations of selection for oil and protein in maize. Maydica 37:81–87

    Google Scholar 

  48. Asamizu E, Sato S, Kaneko T, Nakamura Y, Kotani H, Miyajima N, Tabata S (1998) Structural analysis of Arabidopsis thaliana chromosome 5. VIII Sequence features of the regions of 1,081,958 bp covered by seventeen physically assigned P1 and TAC clones. DNA Res 5:379–391

    Article  PubMed  CAS  Google Scholar 

  49. Ohrongge J, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  Google Scholar 

  50. Mou ZL, He YK, Dai Y, Liu X, Li JY (2000) Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12:405–417

    Article  PubMed  CAS  Google Scholar 

  51. Heath RJ (2002) The Claisen condensation in biology. Nat Prod Rep 19:581–596

    Article  PubMed  CAS  Google Scholar 

  52. Pereto J, Lopez-Garcia P, Moreira D (2005) Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J Mol Evol 61:65–74

    Article  PubMed  CAS  Google Scholar 

  53. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Masahiro Y (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  PubMed  CAS  Google Scholar 

  54. Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  55. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  56. Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  PubMed  CAS  Google Scholar 

  57. Clark RM, Linton E, Messing J, Doebley JF (2004) Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA 101:700–707

    Article  PubMed  CAS  Google Scholar 

  58. Clark RM, Wagler TN, Quijada P, Doebley JF (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597

    Article  PubMed  CAS  Google Scholar 

  59. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Nature Science Foundation of China (30571165) and Agriculture Ministry of China (2004-Z25) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Yang, X., Fu, Y. et al. Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep 36, 813–821 (2009). https://doi.org/10.1007/s11033-008-9250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9250-3

Keywords

Navigation