Skip to main content
Log in

Downregulation of Cinnamoyl CoA Reductase Affects Lignin and Phenolic Acids Biosynthesis in Salvia miltiorrhiza Bunge

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The biosynthesis of salvianolic acid B shares the phenylpropanoid pathway with lignin, and cinnamoyl CoA reductase (CCR; EC 1.2.1.44) is a specific enzyme in the lignin pathway. In this study, a CCR gene (SmCCR1) from Salvia miltiorrhiza Bunge was cloned using DNA walking technology (GenBank ID: JF798634). The full-length SmCCR1 is 2,489 bp long and consists of four introns and five exons encoding a polypeptide of 324 amino acid residues. Sequence alignment revealed that SmCCR1 shares 83 % identity with CCR sequences reported in Camellia oleifera and other plant species. Expression pattern analysis indicated that expression of SmCCR1 can be induced by exposure to Xanthomonas campestris pv. Campestris or methyl jasmonate. To demonstrate its functioning, we selected a 296-bp fragment and established an RNA interference construct that was introduced into S. miltiorrhiza by Agrobacterium tumefaciens-mediated gene transfer. Transgenic plants exhibited dwarfing phenotypes, and both syringyl and guaiacyl lignin monomers were decreased more than 60 %. In contrast, biosynthesis of phenolic acids—danshensu, rosmarinic acid, and salvianolic acid B—was strongly induced by 2.03-, 1.41-, and 1.45-fold, respectively, in the roots of transgenic plants from line CCR-10. Consistent with these phytochemical changes, downregulation of SmCCR1 also affected the expression of related genes in the phenolics and lignin biosynthetic pathways. Our results also provide potential opportunities for engineering danshensu and salvianolic acid B production in S. miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bi CL, Fang C, Jackson L, Gill BS, Li WL (2011) Expression of lignin biosynthetic genes in wheat during development and upon infection by fungal pathogens. Plant Mol Biol Report 29:149–161

    Article  CAS  Google Scholar 

  • Capeleti I, Bonini EA, Ferrarese MDL, Teixeira ACN, Krzyzanowski FC, Ferrarese-Filho O (2005) Lignin content and peroxidase activity in soybean seed coat susceptible and resistant to mechanical damage. Acta Physiol Plant 27:103–108

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Escamilla-Treviño L, Shen H, Uppalapati SR, Ray T, Tang YH, Hernandez T, Yin YB, Xu Y, Dixon RA (2010) Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol 185:143–155

    Article  PubMed  Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barrière Y, Lapièrre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legranda M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, Waele D, Depicker A, Messens E, Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Luo G, Zhao Z, Jiang Z (2005) Quality assessment of Radix alviae Miltiorrhizae. Chem Pharm Bull (Tokyo) 53:481–486

    Article  CAS  Google Scholar 

  • Hu YS, Di P, Chen JF, Xiao Y, Zhang L, Chen WS (2010) Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort. Mol Biol Rep. doi:10.1007/s11033-010-0333-6

  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323

    Article  PubMed  CAS  Google Scholar 

  • Kirsi M, Oksman C, Dirk L (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:432–440

    Google Scholar 

  • Lacombe E, Hawkins S, Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Larsen K (2004) Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (Hordeum vulgare) and potato (Solanum tuberosum). J Plant Physiol 161:105–121

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K et al (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  CAS  Google Scholar 

  • Li YG, Song L, Liu M, Hu ZB, Wang ZT (2009) Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen). J Chromatogr 1216:1941–1953

    Article  CAS  Google Scholar 

  • Liu AH, Li L, Xu M, Lin YH, Guo HZ, Guo DA (2006) Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC-DAD method. J Pharm Biomed Anal 41:48–56

    Article  PubMed  Google Scholar 

  • Lummerzheim M, De Oliveira D, Castresana C, Miguens FC, Louzada E, Roby D, Van Montagu M, Timmerman B (1993) Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response. Mol Plant Microbe Interact 6:532–544

    Article  CAS  Google Scholar 

  • Ma L, Zhang X, Guo H, Gan Y (2006) Determination of fourwater-soluble compounds in Salvia miltiorrhiza Bunge by high performance liquid chromatography with a coulometric electrode array system. J Chromatogr B Analyt Technol Biomed Life Sci 833:260–263

    Article  PubMed  CAS  Google Scholar 

  • Minami E, Ozeki Y, Matsuoka M, Koiruka N, Tanaka Y (1989) Structure and some characterization of the gene for phenylalanineammonia-lyase from rice plants. Eur J Biochem 185:19–25

    Article  PubMed  CAS  Google Scholar 

  • Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do CT, Thevenin J, Buffard D, Jouanin L, Lapierre C (2008) Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227:943–956

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Haüsler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14

    Article  CAS  Google Scholar 

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676

    Article  PubMed  CAS  Google Scholar 

  • Pincon G, Chabannes M, Lapierre C, Pollet B, Ruel K, Joseleau JP, Boudet AM, Legrand M (2001) Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene. Consequences for plant development and lignin synthesis. Plant Physiol 126:145–155

    Article  PubMed  CAS  Google Scholar 

  • Rest B, Danoun S, Boudet AM, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411

    Article  PubMed  Google Scholar 

  • Shadle G, Chen F, Srinivasa Reddy MS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Tu Y, Rochfort S, Liu ZQ, Ran YD, Griffith M, Badenhorst P, Louie GV, Bowman EB, Smith KF, Noel JP, Mouradov A, Spangenberg G (2010) Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 22:3357–3373

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a defence mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  PubMed  CAS  Google Scholar 

  • Wadenbäck J, Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgen Res 17:379–392

    Article  Google Scholar 

  • Wang XJ, Wang ZB, Xu JX (2005) Effect of salvianic acid A on lipid peroxidation and membrane permeability in mitochondria. J Ethnopharmacol 97:441–445

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Sun B, Zhu H, Gao Y, Li XR, Xue DB, Jiang HC (2010) Protective effects of emodin combined with danshensu on experimental severe acute pancreatitis. Inflamm Res 59:479–488

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Qiao H, Li Y, Li L (2007) Protective roles of puerarin and Danshensu on acute ischemic myocardial injury in rats. Phytomedicine 14:652–658

    Article  PubMed  CAS  Google Scholar 

  • Yan YP, Wang ZZ (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Org Cult 88:175–184

    Article  CAS  Google Scholar 

  • Zhang Y, Yan YP, Wang ZZ (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58:12168–12175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Fundamental Research Funds for the Central Universities” (Program No. GK200901014) and “Innovation Funds of Graduate Programs, Shaanxi Normal University” (2011CXS034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhezhi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Primers used in experimental procedures (DOC 39 kb)

Fig. 1

GC–MS analysis of lignin monomer content from stem extract. IS internal standard; G1, G2 G lignin; S1, S2 S lignin (JPEG 4 kb)

High resolution image file (TIFF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Cui, L., Chen, C. et al. Downregulation of Cinnamoyl CoA Reductase Affects Lignin and Phenolic Acids Biosynthesis in Salvia miltiorrhiza Bunge. Plant Mol Biol Rep 30, 1229–1236 (2012). https://doi.org/10.1007/s11105-012-0444-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0444-4

Keywords

Navigation