Skip to main content
Log in

Overexpression of the LmHQT1 gene increases chlorogenic acid production in Lonicera macranthoides Hand-Mazz

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Lonicera macranthoides Hand-Mazz contains high levels of chlorogenic acid (CGA). The CGA is synthesized via different biosynthetic pathways in various plant species, and hydroxycinnamoyl-coenzyme A quinate transferases (HQTs) are key enzymes in these routes. In this study, we isolated the LmHQT1 gene, which encodes a protein of 447 amino acid residues with conserved HXXXD and DFGWG motifs. It is very closely homologous to HQT genes in Lonicera japonica (LjHQT), Solanum lycopersicum (SlHQT) and Nicotiana sylvestris (NsHQT). Quantitative reverse-transcription polymerase chain reaction showed that LmHQT1 gene expression decreased following leaf senescence. The CGA contents displayed similar trends, suggesting a potential role of LmHQT1 in CGA biosynthesis. To characterize its function, LmHQT1 overexpressing plants were generated via Agrobacterium transformation methods established previously. Upregulation of LmHQT1 in L. macranthoides was observed to elevate the CGA levels up to 60% in leaves. These findings indicated that LmHQT1was devoted to CGA biosynthesis in L. macranthoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert D, Zundorf I, Dingermann T, Muller WE, Steinhilber D, Werz O (2002) Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 64:1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Azzini E, Bugianesi R, Romano F, Di Venere D, Miccadei S, Durazzo A, Foddai MS, Catasta G, Linsalata V, Maiani G (2007) Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study. Br J Nutr 97:963–969

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  Google Scholar 

  • Chagas-Paula DA, de Oliveira RB, da Silva VC, Gobbo-Neto L, Gasparoto TH, Campanelli AP, Faccioli LH, Da Costa FB (2011) Chlorogenic acids from Tithonia diversifolia demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones. J Ethnopharmacol 136:355–362

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Tang N, You Y, Lan J, Liu Y, Li Z (2015) Transcriptome analysis reveals the mechanism underlying the production of a high quantity of chlorogenic acid in young leaves of Lonicera macranthoides Hand.-Mazz. PLoS One 10:e0137212

    Article  PubMed  PubMed Central  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MA (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  PubMed  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:1

    Article  Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer KD, Birt DF (2014) Evidence for contributions of interactions of constituents to the anti-inflammatory activity of Hypericum perforatum. Crit Rev Food Sci Nutr 54:781–789

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howles PA, Sewalt VJ, Paiva NL, Elkind Y, Bate NJ, Lamb C, Dixon RA (1996) Overexpression of l-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 112:1617–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136:1192–1197

    CAS  PubMed  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978–996

    Article  CAS  Google Scholar 

  • Li Y, Chen M, Wang S, Ning J, Ding X, Chu Z (2015) AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell. Tissue Organ Culture (PCTOC) 122:309–319

    Article  CAS  Google Scholar 

  • Mahesh V, Million-Rousseau R, Ullmann P, Chabrillange N, Bustamante J, Mondolot L, Morant M, Noirot M, Hamon S, de Kochko A, Werck-Reichhart D, Campa C (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145–159

    Article  CAS  PubMed  Google Scholar 

  • Moglia A, Lanteri S, Comino C, Acquadro A, de Vos R, Beekwilder J (2008) Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 56:8641–8649

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  PubMed  Google Scholar 

  • Onakpoya IJ, Spencer EA, Thompson MJ, Heneghan CJ (2015) The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens 29:77–81

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Li W, Wang W, Bai G (2010) Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica. Planta Med 76:1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Schutz K, Kammerer D, Carle R, Schieber A (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MS(n). J Agric Food Chem 52:4090–4096

    Article  PubMed  Google Scholar 

  • Sonnante G, D’Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C (2010) Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol 153:1224–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Pierre B, Laflamme P, Alarco AM, Luca E (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J 14:703–713

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villegas RJ, Kojima M (1986) Purification and characterization of hydroxycinnamoyl d-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. J Biol Chem 261:8729–8733

    CAS  PubMed  Google Scholar 

  • Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen J, Li Y, Nie Q, Li J (2009) An efficient procedure for regeneration from leaf-derived calluses of Lonicera macranthoides ‘Jincuilei’, an important medicinal plant. HortScience 44:746–750

    Google Scholar 

  • Yang H, Yuan B, Li L, Chen H, Li F (2004) HPLC determination and pharmacokinetics of chlorogenic acid in rabbit plasma after an oral dose of Flos Lonicerae extract. J Chromatogr Sci 42:173–176

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH, Ulbrich B, Busse J, Stockigt J (1980) Procedure for the enzymatic synthesis and isolation of cinnamoyl-CoA thiolesters using a bacterial system. Anal Biochem 101:182–187

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang J, Ballevre O, Luo H, Zhang W (2012) Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res 35:370–374

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Tong Q (2003) Comparative study on content of chlorogenic acid in Lonicera japonica and L. macranthoides. Zhong Yao Cai 26:399–400

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Project No. KJ1401103), Chongqing Natural Science Foundation (Project No. cstc2012jjA80018, cstc2014jcyjA80035), the National Natural Science Foundation of China (Grant No. 31200512), and the Scientific Research Foundation of Chongqing University of Arts and Science of China (Grant No. Z2011RCYJ07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Tang.

Additional information

Communicated by J. Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, G., Liu, Y. et al. Overexpression of the LmHQT1 gene increases chlorogenic acid production in Lonicera macranthoides Hand-Mazz. Acta Physiol Plant 39, 27 (2017). https://doi.org/10.1007/s11738-016-2310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2310-8

Keywords

Navigation