Skip to main content

Advertisement

Log in

Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Heterosis, the superior performance of hybrids as compared to their parental mean is an agronomically important phenomenon well-described morphologically. However, little is known about its molecular basis. We investigated four genetically unrelated maize (Zea mays L.) inbred lines and their F1 crosses both at the phenotype and transcriptome level, focusing on plant height (PHT) component traits. Substantial mid-parent heterosis (MPH) was found for all parent-hybrid triplets for PHT in the range of 37.9–56.4% in the field and 11.1–39.5% under controlled greenhouse conditions. Analyses of heterosis for number and length of internodes showed two to three times higher MPH in the field as compared to the greenhouse. All three traits exhibited high heritabilities, highest for PHT 95–98%. Two methods for gene expression quantification were applied. High-density cDNA uni-gene microarrays containing 11,827 ESTs were utilized for the selection of differentially expressed genes related to heterosis for PHT. For the four triplets with eight possible parent-hybrid comparisons we identified 434 consistently differentially expressed genes with a p ≤ 0.05. Microarray results were used to verify the dominance/overdominance hypothesis. In our study, more than 50% genes showed overdominance, 26% partial dominance, 12.6% complete dominance and 10.2% additive gene action. Moreover, more consistently differentially expressed genes were detected in related triplets, sharing one parent, than in unrelated triplets. Quantitative RT-PCR was applied in order to validate microarray results. The role of the differentially expressed genes in relation to heterosis for PHT is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Act:

Actin

ANOVA:

Analysis of variance

Cy3:

Cyanine 3

Cy5:

Cyanine 5

CHL P:

Geranyl-geranyl reductase

FDR:

False discovery rate

GASR 1:

Gibberellin-stimulated transcript 1-like rice protein

GO:

Gene ontology assignment

HPH:

High-parent heterosis

INT:

Internode length

MAc1:

Maize actin 1 gene

MPH:

Mid-parent heterosis

NOI:

Number of internodes

PHT:

Plant height

qRT-PCR:

Quantitative real-time polymerase chain reaction

SOTA:

self-organizing tree algorithm

References

  • Abruzzo LV, Lee KY, Fuller A, Silverman A, Keating MJ, Medeiros LJ, Coombes KR (2005) Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical methos to normalize real-time RT-PCR data. Biotechniques 38:785–792

    CAS  PubMed  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Genetics 96:10284–10289

    CAS  Google Scholar 

  • Auger DL, Gray AD, Ream TS, Kato A, Coe JEH, Birchler JA (2005) Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169:389–397

    Article  CAS  PubMed  Google Scholar 

  • Becker HC (1993) Pflanzenzüchtung. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Benchimol LL, De Souza CL Jr, Garcia AAF, Kono PMS, Mangolin CA, Barbosa AMM, Coelho ASG, De Souza AP (2000) Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid determined by RFLP markers. Plant Breed 119:491–496

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300

    Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, León Gd (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  PubMed  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigour. Science 32:627–628

    Article  PubMed  CAS  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss S (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754

    Article  CAS  PubMed  Google Scholar 

  • Chen WQJ, Chang SH, Hudson ME, Kwan WK, Li JQ, Estes B, Knoll D, Shi L, Zhu T (2005) Contribution of transcriptional regulation to natural variations in Arabidopsis. Genome Biol 6(4):R32

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigour. Genetics 33:477–487

    PubMed  CAS  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    Article  PubMed  CAS  Google Scholar 

  • Desprez T, Amselem J, Caboche M, Höfte H (1998) Differential gene expression in Arabidopsis monitored using cDNA arrays. Plant J 14:643–652

    Article  CAS  PubMed  Google Scholar 

  • Dilger M, Felsenstein FG, Schwarz G (2003) Identification and quantitative expression analysis of genes that are differentially expressed during conidial germination in Pyrenophora teres. Mol Genet Genomics 270:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Brinch-Pedersen H, Holm PB (2005) A microarray based, comparative analysis of the gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res 14:887–905

    Article  CAS  PubMed  Google Scholar 

  • Harberd NP, Freeling M (1989) Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121:827–838

    PubMed  CAS  Google Scholar 

  • Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134

    Article  CAS  PubMed  Google Scholar 

  • Hull FH (1945) Recurrent selection for specific combining ability in corn. J Am Soc Agron 37:134–135

    Google Scholar 

  • Jacobs T (1997) Why do plant cells divide. Plant Cell 9:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Jenson SD, Robetorye RS, Bohling SD, Schumacher JA, Morgan JW, Lim MS, Elenitoba-Jonson KSJ (2003) Validation of cDNA microarray gene expression data obtained from linearly amplified RNA. J Clin Pathol Mol: Pathol 56:307–312

    Article  CAS  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    PubMed  CAS  Google Scholar 

  • Keller B, Emrich K, Hoecker N, Sauer M, Hochholdinger F, Piepho H-P (2005) Designing a microarray experiment to estimate dominance in maize (Zea mays L.). Theor Appl Genet 111:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kiesselbach TA (1922) Corn investigations. Bull Agric Experiment Station Nebraska 20:5–151

    Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Lamkey KR, Edwards JW (1998) Guantitative genetics of heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison, WI, pp 31–48

    Google Scholar 

  • Lancashire DP, Bleiholder H, Van den Boom T, Langelüddeke P, Stauss R, Weber E, Witzenberger A (1991) A uniformal decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Lanza LLB, deSouza CL, Ottoboni LMM, Vieira MLC, deSouza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Lee E-J, Koizumi N, Sano H (2004) Identification of genes that are up-regulated in concern during sugar depleition in Arabidopsis. Plant Cell Environ 27:337–345

    Article  CAS  Google Scholar 

  • Lee J-M, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  CAS  PubMed  Google Scholar 

  • Li Z-K, Luo JL, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding derpession and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    CAS  PubMed  Google Scholar 

  • Lincoln T, Zeiger E (1998) Plant physiology. Sinauer Sunderland, MA

    Google Scholar 

  • Lübberstedt T, Melchinger AE, Fähr S, Klein D, Dally A, Westhoff P (1998) QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38:1278–1289

    Article  Google Scholar 

  • Lübberstedt T, Melchinger AE, Schön C, Utz HF, Klein D (1997) QTL mapping in testcrosses of european flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Article  Google Scholar 

  • Luo JL, Li Z-K, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yiels components. Genetics 158:1755–1771

    CAS  PubMed  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison, WI, pp 99–118

    Google Scholar 

  • Meyer RC, Törjék O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134:1813–1823

    Article  CAS  PubMed  Google Scholar 

  • Milach SCK, Rines HW, Phillips RL (2002) Plant height components and gibberellic acid response of oat dwarf lines. Crop Sci 42:1147–1154

    Article  CAS  Google Scholar 

  • Niklas KJ, Enquist BJ (2000) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA 98:2922–2927

    Article  Google Scholar 

  • Ogawa M, Kusano T, Koizumi N, Katsumi M, Sano H (1999) Gibberellin-responsive genes: high level of transcript accumulation in leaf sheath meristematic tissue from Zea mays L. Plant Mol Biol 40:645–657

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell (Supp) :S61–S80

  • Rajeevan MS, Vernon SD, Taysavang N, Unger ER (2001) Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn 3:26–31

    CAS  PubMed  Google Scholar 

  • Rood SB, Pharis RP, Koshioka M, Major DJ (1983) Gibberellins and heterosis in maize. Plant Physiol 71:639–644

    Article  CAS  PubMed  Google Scholar 

  • Ros B, Thümmler F, Wenzel G (2004) Analysis of differentially expressed genes in a susceptable and moderately resistant potato cultivar upon Phytophthora infestans infection. Mol Plant Pathol 5:191–201

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    Article  CAS  PubMed  Google Scholar 

  • Sari-Gorla M, Krajewski P, Fonzo ND, Villa M, Frova C (1999) Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor Appl Genet 99:289–295

    Article  Google Scholar 

  • Schmittgen T, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Hochholdinger F, Nakazano M (2004) Global expression profiling applied to plant development. Curr Opin Plant Biol 7:50–56

    Article  CAS  PubMed  Google Scholar 

  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Google Scholar 

  • Shi C, Ingvardsen C, Thümmler F, Melchinger AE, Wenzel G, Lübberstedt T (2005) Identification of differentially expressed genes between maize near-isogenic lines in association with SCMV resistance using suppression substractive hybridization. Mol Genet Genomics 273:450–461

    Article  CAS  PubMed  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301

    Google Scholar 

  • Sowiński P, Ridzińska-Langwald A, Adamczyk J, Kubica I, Fronk J (2005) Recovery of maize seedling growth, development and photosynthetic efficiency afetr initial growth at low temperature. J Plant Physiol 162:67–80

    Article  PubMed  CAS  Google Scholar 

  • Steckel D (2003) Microarray bioinformatics. Cambridge University Press, UK

    Google Scholar 

  • Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize. 2. factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) Alla possible modes of gene action are observed in a blobal comparison of gene expression in maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Oster U, Kruse E, Rüdiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120:695–704

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  PubMed  Google Scholar 

  • Tollenaar M, Ahmadzadeh A, Lee EA (2004) Crop physiology and metabolism. Physiological basis of heterosis for grain yield in maize. Crop Sci 44:2086–2094

    Article  Google Scholar 

  • Troyer AF, Larkins JR (1985) Selection for early flowering in corn: 10 late synthetics. Crop Sci 25:695–697

    Article  Google Scholar 

  • Tsaftaris SA (1995) Molecular aspects of heterosis in plants. Physiol Plant 94:362–370

    Article  CAS  Google Scholar 

  • Warringer J, Ericson E, Frernandez L, Nerman O, Blomberg A (2003) High-resolution yeast phenomics resolves different physiological features in the saline response. Proc Natl Acad Sci USA 100:15724–15729

    Article  CAS  PubMed  Google Scholar 

  • Williams W (1959) Heterosis and the genetics of complex characters. Nature (London) 184:527–530

    Article  CAS  Google Scholar 

  • Xiao JH, Li JM, Yuan LP, Tanksley SD (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754

    CAS  PubMed  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  Google Scholar 

  • Yu SB, Li JX, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  CAS  PubMed  Google Scholar 

  • Zsubori Z, Gyenes-Hegyi Z, Illés O, Pók I, Rácz F, Szőke C (2002) Inheritance of plant and ear height in maize (Zea mays L.). J Agric Sci Univer Debrecen 8:34–38

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. A. E. Melchinger (University of Hohenheim) for providing seeds, Dr. J. Eder, Dr. B. Krützfeld and all technical assistants from LfL Bayern for perfect conduction of field trials, scientists from TUM (Munich, Germany) and Flakkebjerg Research Centre (Denmark) for support and contribution in the discussion of the data, and finally to all groups participating in the DFG “Heterosis in Plants” project for the exchange of the data and profitable cooperation. This work was supported by the German Research Foundation (DFG), SPP 1149, Heterosis in Plants (WE 956/6–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lübberstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Użarowska, A., Keller, B., Piepho, HP. et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63, 21–34 (2007). https://doi.org/10.1007/s11103-006-9069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9069-z

Keywords

Navigation