Skip to main content

Advertisement

Log in

Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Heterosis is important for conventional plant breeding and is intensively used to increase the productivity of crop plants. Genetic processes shortly after fertilization might be of particular importance with respect to heterosis, because coordination of the diverse genomes establishes a basis for future performance of the sporophyte. Here we demonstrate a strong crossbreeding advantage of hybrid maize embryos as early as 6 days after fertilization in a modern maize hybrid and provide the first embryo specific analysis of associated gene expression pattern at this early stage of development. We identified differentially expressed genes between hybrid embryos and the parental genotypes by a combined approach of suppression subtractive hybridization and differential screening by microarray hybridizations. Association of heterosis in embryos with genes related to signal transduction and other regulatory processes was implied by the enrichment of these functional classes among the identified gene set. Quantitative RT-PCR analysis validated the expression pattern of 7 of 12 genes analysed and revealed predominantly additive, but also dominant and overdominant expression patterns in hybrid embryos. These patterns indicate that gene regulatory interactions among parental alleles act at this early developmental stage and the genes identified provide entry points for the exploration of gene regulatory networks associated with the specification of the phenomenon heterosis in the plant life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Dap:

Days after pollination

MPH:

Mid-parent heterosis

BPH:

Best-parent heterosis

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59

    Article  PubMed  CAS  Google Scholar 

  • Abdelhaleem M (2005) RNA helicases: regulators of differentiation. Clin Biochem 38:499–503

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ashby E (1930) Studies in the inheritance of physiological characters. I. A physiological investigation of the nature of hybrid vigor in maize. Ann Bot XLIV:457–468

    Google Scholar 

  • Ashby E (1932) Studies in the inheritance of physiological characters. II. Further experiments upon the basis of hybrid vigor and upon the inheritance of efficenciy index and respiration rate in maize. Ann Bot XLVI:1007–1032

    Google Scholar 

  • Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T, Wang J, Cao M, Yang H, Wang SM, Yu J (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 138:1216–1231

    Article  PubMed  CAS  Google Scholar 

  • Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petitprez M, Gentzbittel L (2005) Comparative analysis of early embryonic sunflower cDNA libraries. Plant Mol Biol 57:255–270

    Article  PubMed  Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  PubMed  CAS  Google Scholar 

  • Bruce AB (1910) The mendelian theory of heredity and the augmentation of vigour. Science 32:627–628

    Article  PubMed  Google Scholar 

  • Chaudhury AM, Berger F (2001) Maternal control of seed development. Semin Cell Dev Biol 12:381–386

    Article  PubMed  CAS  Google Scholar 

  • Costa L, Gutierrez-Marcos JF, Dickinson HG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9:507–514

    Article  PubMed  CAS  Google Scholar 

  • Davenport CB (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    Article  PubMed  Google Scholar 

  • East EM (1936) Inbreeding in corn. Conn Agr Exp Sta Rpt 1907:419–428

    Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. PNAS 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Galjart N (2005) CLIPs and CLAPs and cellular dynamics. Nat Rev Mol Cell Biol 6:487–498

    Article  PubMed  CAS  Google Scholar 

  • Germain H, Rudd S, Zotti C, Caron S, O’Brien M, Chantha SC, Lagace M, Major F, Matton DP (2005) A 6374 unigene set corresponding to low abundance transcripts expressed following fertilization in Solanum chacoense Bitt, and characterization of 30 receptor-like kinases. Plant Mol Biol 59:515–532

    Article  PubMed  CAS  Google Scholar 

  • Goodnight CJ (1999) Epistasis and heterosis. In: Coors JG, Pandey S (eds) Genetic and exploitation of heterosis in crops. ASA-CSSA, Madison, pp 59–67

    Google Scholar 

  • Grimanelli D, Perotti E, Ramirez J, Leblanc O (2005) Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell 17:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet DOI 10.1007/s00122–006-0335-x

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  PubMed  CAS  Google Scholar 

  • Hoecker N, Keller B, Piepho HP, Hochholdinger F (2005) Manifestation of heterosis during early maize (Zea mays L.) root development. Theor Appl Genet 12:421–429

    Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    PubMed  CAS  Google Scholar 

  • Kerr MK, Mitchell M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comp Biol 7:819–837

    Article  CAS  Google Scholar 

  • Le Q, Gutierrez-Marcos JF, Costa LM, Meyer S, Dickinson HG, Lörz H, Kranz E, Scholten S (2005) Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J 44:167–178

    Article  PubMed  CAS  Google Scholar 

  • Meyer RC, Torjek O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Mosher RA, Durrant WE, Wang D, Song J, Dong X (2006) A comprehensive structure–function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18:1750–1765

    Google Scholar 

  • Murdoch HA (1940) Hybrid vigor in maize embryos. J Hered 31:361–363

    Google Scholar 

  • Omholt SW, Plahte E, Oyehaug L, Xiang K (2000) Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155:969–980

    PubMed  CAS  Google Scholar 

  • Pang S-Z, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MAW, Fromm ME (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112:893–900

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:E36

    Google Scholar 

  • R Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rudd S, Mewes HW, Mayer KF (2003) Sputnik: a database platform for comparative plant genomics. Nucleic Acids Res 31:128–132

    Article  PubMed  CAS  Google Scholar 

  • Scholten S, Lörz H, Kranz E (2002) Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J 32:221–231

    Article  PubMed  CAS  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. PNAS 100:9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW (1994) Heterosis in plant breeding. Plant Breed Rev 12: 227–251

    Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. PNAS 103:6805–6810

    Article  PubMed  CAS  Google Scholar 

  • Tone Y, Tanahashi N, Tanaka K, Fujimuro M, Yokosawa H, Toh-e A (2000) Nob1p, a new essential protein, associates with the 26S proteasome of growing saccharomyces cerevisiae cells. Gene 243:37–45

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada J-P, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 350:241–243

    Google Scholar 

  • Vielle-Calzada J-P, Baskar R, Grossniklaus U (2001) Early paternal gene activity in Arabidopsis. Nature 414:710

    Article  Google Scholar 

  • Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171:1267–1275

    Article  PubMed  CAS  Google Scholar 

  • Wang FH (1947) Embryological development of inbred and hybrid Zea mays L. Am J Bot 34:113–125

    Article  Google Scholar 

  • Weijers D, Geldner N, Offringa R, Jürgens G (2001) Early paternal gene activity in Arabidopsis. Nature 414:709–710

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yu Z, Fu X, Liang C (2002) Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell 28:849–860

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Melchinger (University of Hohenheim) and his coworkers for providing seeds of the inbred lines used in this study. We are especially grateful to Petra von Wiegen and Marlis Nissen for excellent technical help with embryo isolation. We thank Bärbel Hagemann for assisting the glass house work. This work was supported by the Eiselen-Foundation, Ulm and the Deutsche Forschungsgemeinschaft (DFG) grant SCHO 746/2 within the framework program “heterosis in plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Scholten.

Additional information

Accession numbers of the sequences mentioned in this article at GeneBank are EE297709 to EE297768.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, S., Pospisil, H. & Scholten, S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63, 381–391 (2007). https://doi.org/10.1007/s11103-006-9095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9095-x

Keywords

Navigation