Skip to main content

Advertisement

Log in

Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Nitrogen (N) deposition and climate change are a threat to the structure and function of drylands, where biocrust-dominated communities are prevalent. We aimed at evaluating the influence of N deposition, climate and edaphic properties of semiarid areas of Spain on soil microbial communities and N cycling.

Methods

We quantified soil bacteria, fungi, ammonium oxidizing bacteria and archaea, estimated the abundance of autotrophic organisms (soil pigment content) and measured a wide array of variables related to the N cycle.

Results

Local climatic conditions and soil fertility were main drivers of soil microbial communities and N cycling. In particular, cyanobacteria were favored in colder sites with lower soil fertility. Higher precipitation at high-fertility sites favored green algae. Soil N availability was negatively related to MAT. Increased N deposition (4.3–7.3 kg N ha−1 yr.−1) reduced the abundance of soil bacteria and fungi, a response partially attributed to N-driven soil acidification, whereas it favored green-algae and increased available N in soil, contributing to a net ecosystem eutrophication.

Conclusions

Changes in soil microbial community structure and nutrient cycling in response to N deposition and climate change will affect the overall functioning of semiarid Mediterranean ecosystems, which may have important implications in terms of long-term soil C sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen EB, Temple PJ, Bytnerowicz A, Arbaugh MJ, Sirulnik AG, Rao LE (2007) Patterns of understory biodiversity in mixed coniferous forests of southern California impacted by air pollution. Sci World J 7:247–263

    Article  CAS  Google Scholar 

  • Aranibar JN, Otter L, Macko SA, Feral CJW, Epstein HE, Dowty PR, Eckhardt F, Shutgart HH, Swap RJ (2003) Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Glob Chang Biol 10:359–373

    Article  Google Scholar 

  • Austin AT, Sala OE (2002) Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. J Veg Sci 13:351–360

    Article  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crust from southeast Utah, USA. Biol Fert Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J, Phillips SL, Flint S, Money J, Caldwell M (2008) Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions. Glob Chang Biol 14:670–686

    Article  Google Scholar 

  • Berkeley A, Thomas AD, Dougill AJ (2005) Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. Afr J Ecol 43:137–145

    Article  Google Scholar 

  • Biudes MS, Vourlitis GL (2012) Carbon and nitrogen mineralization of a semiarid shrubland exposed to experimental nitrogen deposition. Soil Sci Soc Am J 76:2068–2073

    Article  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Caporaso S, Allegrezza M (2006) Short-term effects of nitrogen enrichment litter removal and cutting on a Mediterranean grassland. Acta Oecol 30:419–425

    Article  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. Microb Ecol 43:13–25

    Article  CAS  PubMed  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Eldridge D, Belnap J, Castillo-Monroy A, Escolar C, Soliveres S (2014) Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer, New York

    Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semiarid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34

    Article  CAS  Google Scholar 

  • Chantigny MH, Angers DA, Kaiser K, Kalbitz K (2006) Extraction and characterization of dissolved organic matter. In: Carter MR, Gregorich EG (Eds.), Soil sampling and methods of analysis, second edition, Canadian Society of Soil Science, pp 617–635

  • Cox RD, Allen EB (2008) Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland. Plant Ecol 198:37–46

    Article  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK (2011) Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632

    Article  PubMed  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2005) Atmospheric nitrate deposition and enhanced dissolved organic carbon leaching: test of a potential mechanism. Soil Sci Soc Am J 69:1233–1237

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Covelo F, Gallardo A (2011) Dissolved organic nitrogen in Mediterranean ecosystems. Pedosphere 21:302–308

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A (2013) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesaña A (2014) Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–1605

    Article  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem control son nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130

    Article  PubMed  Google Scholar 

  • Demoling F, Nilsson LO, Bååth E (2008) Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–379

    Article  CAS  Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Dougill AJ, Thomas AD (2004) Kalahari sand soils: spatial heterogeneity, biological soil crusts and land degradation. Land Degrad Dev 15:233–242

    Article  Google Scholar 

  • Eisenlord SD, Zak DR (2010) Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Sci Soc Am J 74:1157–1166

    Article  CAS  Google Scholar 

  • Evans SE, Wallenstein MD (2011) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116

    Article  Google Scholar 

  • Fang Y, Zhu W, Gundersen P, Mo J, Zhou G, Yoh M (2009) Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems 12:33–45

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XJ, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Chang 62:195–209

    Article  Google Scholar 

  • García-Gómez H, Garrido JL, Vivanco MG, Lassaletta L, Rabago I, Avila A, Tsyro T, Sanchez G, Gonzales-Ortiz A, Gonzalez-Fernandez I, Alonso R (2014) Nitrogen deposition in Spain: modeled patterns and threatened habitats within the Natura 2000 network. Sci Total Environ 485:450–460

    Article  PubMed  Google Scholar 

  • Gaudnik C, Corcket E, Clément B, Delmas CEL, Gombert-Courvoisier S, Muller S, Stevens CJ, Alard D (2011) Detecting the footprint of changing atmospheric nitrogen deposition loads on acid grasslands in the context of climate change. Glob Chang Biol 17:3351–3365

    Article  Google Scholar 

  • Griffiths RP, Madtritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains USA: implications for the effects of climate change on soil properties. For Ecol Manag 257:1–7

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV (2003) Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi. Ecology 84:1553–1562

    Article  Google Scholar 

  • Hessen DO, Andersen T, Larsen S, Skjelkvåle BL, de Wit HA (2009) Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnol Oceanogr 54:2520–2528

    Article  CAS  Google Scholar 

  • Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ Pollut 155:336–349

    Article  CAS  PubMed  Google Scholar 

  • Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173

    Article  CAS  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen DON and dissolved organic carbon DOC in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Li XR, Zhang P, Su YG, Jia RL (2012) Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four year field study. Catena 97:119–126

    Article  CAS  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg LJL, Francez A-J, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken J-F, Rocheford L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming sphagnum mosses: a meta-analysis. New Phytol 191:496–507

    Article  CAS  PubMed  Google Scholar 

  • Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale M (2015) Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol 21:3169–3180

    Article  PubMed  Google Scholar 

  • Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J, Escolar C, Escudero A, Lázaro R, Martínez I (2011) Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans R Soc B 367:3062–3075

    Article  Google Scholar 

  • Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol 20:131–138

    Article  PubMed  Google Scholar 

  • McCulley RL, Burke IC, Laurenroth WK (2009) Conservation of nitrogen increases with precipitation across a major grassland in the Central Great Plains of North America. Oecologia 159:571–581

    Article  PubMed  Google Scholar 

  • Miranda JD, Armas C, Padilla FM, Pugnaire FI (2011) Climatic change and rainfall patterns: effects on semi-arid plant communities of the Iberian southeast. J Arid Environ 75:1302–1309

    Article  Google Scholar 

  • Nordin A, Hogberg P, Nasholm T (2001) Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129:125–132

    Article  Google Scholar 

  • Ochoa-Hueso R, Manrique E (2010) Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland. Plant Ecol 210:263–273

    Article  Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, Manrique E, Pérez-Corona ME, Sheppard LJ, Stock WD (2011a) Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environ Pollut 159:2265–2279

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Hueso R, Hernandez RR, Pueyo JJ, Manrique E (2011b) Spatial distribution of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biol Biochem 43:1894–1901

    Article  CAS  Google Scholar 

  • Ochoa-Hueso R, Maestre FT, de los Ríos A, Valea S, Theobald MR, Vivanco MG, Manrique E, Bowker MA (2013a) Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems. Environ Pollut 179:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Hueso R, Pérez-Corona ME, Manrique E (2013b) Impacts of simulated N deposition on plants and mycorrhizae from Spanish semiarid Mediterranean shrublands. Ecosystems 16:838–851

    Article  CAS  Google Scholar 

  • Ochoa-Hueso R, Stevens CJ, Ortiz-Llorente MJ, Manrique E (2013c) Soil chemistry and fertility alterations in response to N application in a semiarid Mediterranean shrubland. Sci Total Environ 452-453:78–86

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Hueso R, Arróniz-Crespo M, Bowker MA, Maestre FT, Pérez-Corona ME, Theobald MR, Vivanco MG, Manrique E (2014) Biogeochemical indicators of elevated nitrogen deposition in semiarid Mediterranean ecosystems. Environ Monit Assess 186:5831–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MS, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Chang Biol 12:470–476

    Article  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215

    Article  Google Scholar 

  • Poikolainen J, Lippo H, Hongisto M, Kubin E, Mikkola K, Lindgren M (1998) On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environ Pollut 102:85–92

    Article  CAS  Google Scholar 

  • Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW (2004) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68:179–197

    Article  CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927

    Article  Google Scholar 

  • Rao LE, Steers RJ, Allen EB (2011) Effects of natural and anthropogenic gradients on native and exotic winter annuals in a southern California desert. Plant Ecol 212:1079–1089

    Article  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755

    Article  CAS  Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Soil microbiology, ecology, and biochemistry, pp. 341–364

  • Rodà F, Ávila A, Rodrigo A (2002) Nitrogen deposition in Mediterranean forests. Environ Pollut 118:205–213

    Article  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization, challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Sinsabaugh RL, Belnap J, Rudgers J, Kuske CR, Martinez N, Sandquist D (2015) Soil microbial responses to nitrogen addition in arid ecosystems. Front Microbiol 6:819

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens CJ, Dise NB, Gowing D (2009) Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environ Pollut 157:313–319

    Article  CAS  PubMed  Google Scholar 

  • Stevens CJ, Manning P, van den Berg LJL, de Graaf MCC, Wamelink GWW, Boxman AW, Bleeker A, Vergeer P, Arroniz-Crespo M, Limpens J, Lamers LPM, Bobbink R, Dorland E (2011) Ecosystem responses to reduced and oxidized nitrogen inputs in European terrestrial habitats. Environ Pollut 159:665–676

    Article  CAS  PubMed  Google Scholar 

  • Tian XF, Hu HW, Ding Q, Song MH, Xu XL, Zheng Y, Guo LD (2014) Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biol Fertil Soils 50:703–713

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Val J, Monge E, Baker NR (1994) An improved HPLC method for rapid analysis of the xanthophylls cycle pigments. J Chromatogr Sci 32:286–289

    Article  Google Scholar 

  • van Diepen LTA, Lilleskov ER, Pregitzer KS, Miller RM (2010) Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems 13:683–695

    Article  Google Scholar 

  • van Diepen LTA, Lilleskov ER, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811

    Article  Google Scholar 

  • Vivanco MG, Palomino I, Vautard R, Bessagnet B, Martín F, Menut L, Jiménez S (2009) Multi-year assessment of photochemical air quality simulation Spain. Environ Model Softw 24:63–73

    Article  Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    Article  CAS  Google Scholar 

  • Warren CR (2009) Does nitrogen concentration affect relative uptake rates of nitrate, ammonium, and glycine? J Plant Nutr Soil Sci 172:224–229

    Article  CAS  Google Scholar 

  • Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19:3688–3697

    Article  PubMed  Google Scholar 

  • Yeomans J, Bremmer JM (1989) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476

    Article  Google Scholar 

  • Yun S-I, Ro H-M, Choi W-J, Han G-H (2011) Interpreting the temperature-induced response of ammonia oxidizing microorganisms in soil using nitrogen isotope fractionation. J Soils Sediments 11:1253–1261

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Burton AJ, Edwards IP, Kellner H (2011) Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecol 4:386–395

    Article  Google Scholar 

  • Zechmeister-Boltenstern S, Michel K, Pfeffer M (2011) Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition. Plant Soil 343:37–50

    Article  CAS  Google Scholar 

  • Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012) Warming and increased precipitation on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Article  CAS  Google Scholar 

  • Zhang X, Liu W, Bai Y, Zhang G, Han X (2011) Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Mol Ecol 20:429–438

    Article  PubMed  Google Scholar 

  • Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mataix-Beneyto J (2009) Storage effects on biochemical properties of air-dried soil samples from southeastern Spain. Arid Land Res Manag 23:213–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministerio de Economía y Competitividad (CGL-2009-11015; CTM2009-12838-CO4-O3), the Comunidad de Madrid (S-0505/AMB/0335), and the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 242658 (BIOCOM project). FTM, MDB and ROH were supported by the BIOCOM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Ochoa-Hueso.

Additional information

Responsible Editor: Kees Jan van Groenigen.

Electronic supplementary material

Table S1

(DOCX 28.5 kb)

Table S2

(DOCX 22 kb)

Table S3

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Hueso, R., Delgado-Baquerizo, M., Gallardo, A. et al. Climatic conditions, soil fertility and atmospheric nitrogen deposition largely determine the structure and functioning of microbial communities in biocrust-dominated Mediterranean drylands. Plant Soil 399, 271–282 (2016). https://doi.org/10.1007/s11104-015-2695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2695-y

Keywords

Navigation