Skip to main content

Advertisement

Log in

Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Heat stress is a growing concern in crop production because of global warming. In many cropping systems heat stress often occurs simultaneously with other environmental stress factors such as mineral nutrient deficiencies. This study aimed to investigate the role of adequate magnesium (Mg) nutrition in mitigating the detrimental effects of heat stress on wheat (Triticum aestivum) and maize (Zea mays).

Methods

Wheat and maize plants were grown in solution culture with low or adequate Mg supply at 25/22 °C (light/dark). Half of the plants were, then, exposed to heat stress at 35/28 °C (light/dark). Development of leaf chlorosis and changes in root and shoot growth, chlorophyll and Mg concentrations as well as the activities of major antioxidative enzymes were quantified in the experimental plants. Additionally, maize plants were analyzed for the specific weights (e.g., dry or fresh weight per a given leaf surface area) and soluble carbohydrate concentrations of sink and source leaves.

Results

Visual leaf symptoms of Mg deficiency were aggravated in wheat and maize when exposed to heat stress. In both species, root growth was more sensitive to Mg deficiency than shoot growth, and the shoot-to-root ratios peaked when heat stress was combined with Mg deficiency. Magnesium deficiency markedly reduced soluble carbohydrate concentrations in young leaf; but resulted in substantial increase in source leaves. Magnesium deficiency also increased activities of antioxidative enzymes, especially when combined with heat stress. The highest activities of superoxide dismutase (up to 80 % above the control), glutathione reductase (up to 250 % above the control) and ascorbate peroxidase (up to 300 % above the control) were measured when Mg-deficient plants were subjected to heat, indicating stimulated formation of reactive oxygen species (ROS) in Mg deficient leaves under heat stress.

Conclusions

Magnesium deficiency increases susceptibility of wheat and maize plants to heat stress, probably by increasing oxidative cellular damage caused by ROS. Ensuring a sufficiently high Mg supply for crop plants through Mg fertilization is a critical factor for minimizing heat-related losses in crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550. doi:10.1007/s11120-008-9331-0

    Article  PubMed  CAS  Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Global Change Biol 17:997–1012. doi:10.1111/j.1365-2486.2010.02262.x

    Article  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants-development visual and analytical diagnosis. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physio 31:491–543. doi:10.1146/annurev.pp. 31.060180.002423

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Braun HJ, Rajaram S, van Ginkel M (1996) CIMMYT’s approach to breeding for wide adaptation. Euphytica 92:175–183. doi:10.1007/BF00022843

    Article  Google Scholar 

  • Bush DR (1989) Proton-coupled sucrose transport in plasmalemma vesicles isolated from sugar beet (Beta vulgaris L. cv. Great Western) leaves. Plant Physiol 89:1318–1323. doi:10.1104/pp. 89.4.1318

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266. doi:10.1093/jxb/45.9.1259

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530. doi:10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250. doi:10.1093/jxb/45.9.1245

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257. doi:10.1093/jxb/45.9.1251

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plantarum 133:692–704. doi:10.1111/j.1399-3054.2007.01042.x

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227. doi:10.1104/pp. 98.4.1222

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Yazici A (2010) Magnesium: a forgotten element in crop production. Better Crops 94:23–25

    Google Scholar 

  • Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11. doi:10.1016/j.envexpbot.2012.04.001

    Article  CAS  Google Scholar 

  • Chapman SC, Chakraborty S, Dreccer MF, Howden SC (2012) Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci 63:251–268. doi:10.1071/CP11303

    Article  Google Scholar 

  • Dash S, Mohanty N (2002) Response of seedlings to heat-stress in cultivars of wheat: growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. J Plant Physiol 159:49–59. doi:10.1078/0176-1617-00594

    Article  CAS  Google Scholar 

  • De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found Sri 39:281–302. doi:10.4038/jnsfsr.v39i4.3879

    Google Scholar 

  • Ding Y, Luo W, Xu G (2006) Characterization of magnesium nutrition and interaction of magnesium and potassium in rice. Ann Appl Biol 149:111–123. doi:10.1111/j.1744-7348.2006.00080.x

    Article  CAS  Google Scholar 

  • Edwards G, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis, 395. University of California Press, Blackwell Scientific Publications, Berkeley

    Google Scholar 

  • Ericsson T, Kähr M (1995) Growth and nutrition of birch seedlings at varied relative addition rates of magnesium. Tree Physiol 15:85–93. doi:10.1093/treephys/15.2.85

    Article  PubMed  CAS  Google Scholar 

  • Esfandiari E, Shokrpour M, Alavi-Kia S (2010) Effect of Mg deficiency on antioxidant enzymes activities and lipid peroxidation. J Agr Sci 2:131–136

    Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:491–507. doi:10.1080/07352689.2011.615687

    Article  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high‐ and low‐temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 100:1554–1561. doi:10.1104/pp.100.3.1554

    Google Scholar 

  • Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiol Plantarum 89:271–276. doi:10.1111/j.1399-3054.1993.tb00153.x

    Article  CAS  Google Scholar 

  • Fischer ES, Lohaus G, Heineke D, Heldt HW (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plantarum 102:16–20. doi:10.1034/j.1399-3054.1998.1020103.x

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25. doi:10.1007/BF00386001

    Article  Google Scholar 

  • Giannopolitis N, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314. doi:10.1104/pp. 59.2.309

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stresstolerance in crop plants. Plant Physiol Bioch 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  • Gong M, Chen SN, Song YQ, Li ZG (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379. doi:10.1071/PP96118

    Article  CAS  Google Scholar 

  • Gourdji S, Mathews KL, Reynolds M, Crossa J, Lobell DB (2013) An assessment of wheat yield sensitivity and breeding gains in hot environments. P Roy Soc B-Biol Sci. doi:10.1098/rspb.2012.2190

  • Gransee A, Führs H (2012) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil. doi:10.1007/s11104-012-1567-y

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505. doi:10.1007/s10265-003-0110-x

    Article  PubMed  CAS  Google Scholar 

  • Hanstein S, Wang XZ, Qian XQ, Friedhoff P, Fatima A, Shan YH, Feng K, Schubert S (2011) Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize. Biochem J 435:93–101. doi:10.1042/BJ20101414

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355. doi:10.1007/s00425-004-1340-4

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549. doi:10.1007/s00425-004-1376-5

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161. doi:10.1093/jxb/eri215

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inzé D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144. doi:10.1111/j.1469-8137.2010.03257.x

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Gao H (2000) Growth and carbohydrate metabolism of creeping bentgrass cultivars in response to increasing temperatures. Crop Sci 40:1115–1120. doi:10.2135/cropsci2000.4041115x

    Article  Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63:3455–3465. doi:10.1093/jxb/ers003

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Huang B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442. doi:10.2135/cropsci2001.412436x

    Article  CAS  Google Scholar 

  • Jones JB, JrB W, Mills H (1991) Plant analysis handbook. Micro-macro publishing, Inc, Athens

    Google Scholar 

  • Kiyoshi T, Shon YG, Lee SH, Kim HY, Moon MS, Lee JJ (1999) The response to oxidative stress induced by magnesium deficiency in kidney bean plants. J Plant Biol 42:294–298. doi:10.1007/BF03030343

    Article  CAS  Google Scholar 

  • Kobayashi NI, Saito T, Iwata N, Ohmae Y, Iwata R, Tanoi K, Nakanishi TM (2012) Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiol Plant. doi:10.1111/ppl.12003

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. doi:10.1104/pp. 010320

    Article  PubMed  CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175. doi:10.1016/j.jplph.2005.04.023

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134:308–315. doi:10.1016/S0176-1617(89)80248-2

    Article  CAS  Google Scholar 

  • Marutani Y, YamauchiY KY, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761. doi:10.1007/s00425-012-1647-5

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Veljovic‐Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot‐London 89:841–850. doi:10.1093/aob/mcf096

    Google Scholar 

  • Pettigrew WT (1999) Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agron J 91:962–968. doi:10.2134/agronj1999.916962x

    Article  CAS  Google Scholar 

  • Pitann B, Schubert S, Mühling KH (2009) Decline in leaf growth under salt stress is due to an inhibition of H+-pumping activity and increase in apoplastic pH of maize leaves. J Plant Nutr Soil Sc 172:535–543. doi:10.1002/jpln.200800349

    Article  CAS  Google Scholar 

  • Riga P, Anza M (2003) Effect of magnesium deficiency on pepper growth parameters: Implications for the determination of magnesium-critical value. J Plant Nutr 26:1581–1593. doi:10.1081/PLN-120022367

    Article  CAS  Google Scholar 

  • Riga P, Anza M, Garbisu C (2005) Suitability of the antioxidative system as marker of magnesium deficiency in Capsicum annuum L. plants under controlled conditions. Plant Growth Regul 46:51–59. doi:10.1007/s10725-005-5466-6

    Article  CAS  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180. doi:10.1007/s11104-010-0520-1

    Article  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. J Plant Physiol. 101:7–12. doi:10.1104/pp.101.1.7

    Google Scholar 

  • Schubert S, Jung S, Hanstein S (2012) Magnesium nutrition of crop plants with special regard to drought stress. In: Abstracts of the First International Symposium on Magnesium in Crop Production, Food Quality and Human Nutrition, 8–9 May, 2012, Gottingen University, Germany

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277. doi:10.1111/j.1365-3040.2005.01324.x

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270. doi:10.1111/j.1365-3040.2011.02336.x

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plantarum 126:45–51. doi:10.1111/j.0031-9317.2005.00582.x

    Article  CAS  Google Scholar 

  • Tahir ISA, Nakata N, Yamaguchi T, Nakano J, Ali AM (2008) Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. J Agron Crop Sci 194:141–151. doi:10.1111/j.1439-037X.2008.00298.x

    Article  Google Scholar 

  • Tan W, Meng QW, Brestic M, Olsovska K, Yang XH (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071. doi:10.1016/j.jplph.2011.06.009

    Article  PubMed  CAS  Google Scholar 

  • Tang N, Li Y, Chen LS (2012) Magnesium deficiency-induced impairment of photosynthesis in leaves of fruiting Citrus reticulata trees accompanied by up-regulation of antioxidant metabolism to avoid photo-oxidative damage. J Plant Nutr Soil Sci 175:784–793. doi:10.1002/jpln.201100329

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic-Amst 108:7–14. doi:10.1016/j.scienta.2005.12.006

    Article  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694. doi:10.1016/j.plantsci.2003.11.004

    Article  CAS  Google Scholar 

  • Timlin D, Lutfor Rahman SM, Baker J, Reddy VR, Fleisher D, Quebedeaux B (2006) Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron J 98:1195–1203. doi:10.2134/agronj2005.0260

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2013) Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil. doi:10.1007/s11104-013-1589-0

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223. doi:10.1016/j.envexpbot.2007.05.011

    Article  Google Scholar 

  • Wang K, Bian S, Jiang Y (2009) Anaerobic metabolism in roots of Kentucky bluegrass in response to short-term waterlogging alone and in combination with high temperatures. Plant Soil 314:221–229. doi:10.1007/s11104-008-9721-2

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nut 12:221–244. doi:10.4067/S0718-95162012000200003

    Article  Google Scholar 

  • Way DA, Sage RF (2008) Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B.S.P.]. Global Change Biol 14:624–636. doi:10.1111/j.1365-2486.2007.01513.x

    Article  Google Scholar 

  • White PJ (2012) Ion uptake mechanisms of individual cells and roots: short-distance transport. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 7–47

    Chapter  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608. doi:10.1007/s11120-008-9372-4

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Nijo N, Pospısil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II:reactive oxygen species are responsible for the damage to photosystemII under moderate heat stress. J Biol Chem 283:28380–28391. doi:10.1074/jbc.M710465200

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Wills AJ (1954) The estimation of carbohydrate in plant extract by anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

  • Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees 26:1237–1250. doi:10.1007/s00468-012-0699-2

    Article  CAS  Google Scholar 

  • Zhao R, Dielen V, Kinet JM, Boutry M (2000) Cosuppresion of aplasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 12:535–546. doi:10.1105/tpc.12.4.535

    PubMed  CAS  Google Scholar 

  • Zheng B, Chenu K, Dreccer MF, Chapman SC (2012) Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biol 18:2899–2914. doi:10.1111/j.1365-2486.2012.02724.x

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by K+S KALI GmbH (Kassel, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Cakmak.

Additional information

Responsible Editor: Philip John White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mengutay, M., Ceylan, Y., Kutman, U.B. et al. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 368, 57–72 (2013). https://doi.org/10.1007/s11104-013-1761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1761-6

Keywords

Navigation