Skip to main content
Log in

A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The aim of the present study was to compare lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes.

Methods

To this purpose, we compared Pb tolerance and accumulation in hydroponics among calamine and non-calamine populations of Silene vulgaris, Noccaea caerulescens, and Matthiola flavida. We established the effects of Ca on Pb tolerance and accumulation in M. flavida, and measured exchangeable soil Pb and Ca at two calamine sites.

Results

Results revealed that calamine populations of S. vulgaris and N. caerulescens were Pb hypertolerant, but the calamine M. flavida population was not. Pb hyperaccumulation capacity was exclusively found in one of the calamine N. caerulescens populations.

Conclusions

1) Pb hypertolerance is sometimes lacking in metallophyte populations from strongly Pb-enriched soil, probably due to a relatively high level of exchangeable soil Ca, 2) Ca effectively counteracts Pb uptake and Pb toxicity, 3) The tendency to hyperaccumulate Pb is a population-specific phenomenon in N. caerulescens, 4) Pb hypertolerance in N. caerulescens is not necessarily associated with a tendency to hyperaccumulate Pb, 5) apparent natural Pb hyperaccumulation in M. flavida is not reproducible in hydroponics, probably due to the absence of air-born contamination in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Assunção AGL, Pieper B, Vromans J, Lindhout P, Aarts MGM, Schat H (2006) Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait analysis of zinc accumulation. New Phytol 170:21–32

    Article  PubMed  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003a) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003b) A co-segregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens. New Phytol 159:383–390

    Article  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Pressl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Brown G, Brinkmann K (1992) Heavy-metal tolerance in Festuca ovina L. from contaminated sites in the Eifel Mountains, Germany. Plant Soil 143:239–247

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  PubMed  CAS  Google Scholar 

  • Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920

    Article  PubMed  CAS  Google Scholar 

  • Ernst WHO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. E. Ulmer Verlag, Stuttgart, pp 473–505

    Google Scholar 

  • Faucon MP, Shutsha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Gartside DW, McNeilly T (1974) Potential for evolution of heavy-metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. Heredity 32:335–348

    Article  Google Scholar 

  • Ghaderian SM, Hemmat GR, Reeves RD, Baker AJM (2007) Accumulation of lead and zinc by plants colonizing a metal mining area in Central Iran. J Appl Bot Food Qual 81:145–150

    CAS  Google Scholar 

  • Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:1–8

    Article  Google Scholar 

  • Jack E, Hakvoort HWJ, Reumer A, Verkleij JAC, Schat H, Ernst WHO (2007) Real-time PCR analysis of metallothionein expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ Exp Bot 59:84–91

    Article  CAS  Google Scholar 

  • Jiménez-Ambriz G, Petit C, Bourrié I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215

    Article  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Ann Rev Plant Biol 61:517–534

    Article  Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    Article  CAS  Google Scholar 

  • Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155:59–66

    Article  CAS  Google Scholar 

  • McNaught SJ, Folsom TC, Lee T, Park F, Price C, Roeder D, Schmitz J, Stockwell C (1974) Heavy metal tolerance in Typha latifolia without evolution of tolerant races. Ecology 55:1163–1165

    Article  Google Scholar 

  • Meyer CL, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte Arabidopsis halleri and the possible role of directional selection. New Phytol 185:130–142

    Article  PubMed  CAS  Google Scholar 

  • Pauwels M, Frérot H, Bonnin I, Saumitou-Laprade P (2006) A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study: Arabidopsis halleri. J Evol Biol 19:1838–1850

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:275–283

    Article  Google Scholar 

  • Sarwar GR (2002) Flora of Pakistan. University of Karachi, Missouri Botanical Press

  • Schat H, Ten Bookum WM (1992a) Metal-specificity of metal tolerance syndromes in higher plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic soils. Intercept, Andover, pp 337–352

    Google Scholar 

  • Schat H, Ten Bookum WM (1992b) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229

    Article  CAS  Google Scholar 

  • Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris. New Phytol 136:489–496

    Article  CAS  Google Scholar 

  • Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895

    Article  CAS  Google Scholar 

  • Simon E (1978) Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytol 81:175–188

    Article  CAS  Google Scholar 

  • Sokal RR, Rolph FJ (1981) Biometry, 2nd edn. Freeman and Company, San Francisco

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Verkleij JAC, Prast JE (1989) Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) Wib.]. New Phytol 111:637–645

    Article  Google Scholar 

  • Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker JHA, McGrath SP (2004) Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytol 163:299–312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge a scholarship to A. Mohtadi from the Ministry of Science, Research and Technology of Iran (MSRT) and Graduate School of the University of Isfahan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Ghaderian.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohtadi, A., Ghaderian, S.M. & Schat, H. A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant Soil 352, 267–276 (2012). https://doi.org/10.1007/s11104-011-0994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0994-5

Keywords

Navigation