Skip to main content
Log in

QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP® markers and expressed sequence tags (ESTs). To establish a genetic map, an F2 population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F2. For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8–60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Peeters AJM, Koornneef M, Lister C, Dean C, Van den Bosch N, Pot J, Kuiper MTR (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Assunção AGL, Da Costa Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    Article  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Voijs R, Schat H, Ernst WHO (2003a) A co-segregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator. New Phytol 159:383–390

    Article  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003b) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Assunção AGL, Ten Bookum WM, Nelissen HJM, Voijs R, Schat H, Ernst WHO (2003c) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  CAS  Google Scholar 

  • Assunção AGL, Pieper B, Vromans J, Lindhout P, Aarts MGM, Schat H (2006) Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation. New Phytol 170:21–32

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Cobbett C (2003) Heavy metals and plants model systems and hyperaccumulators. New Phytol 159:289–293

    Article  Google Scholar 

  • Escarré J, Lefebvre C, Gruber W, Leblanc M, Lepart J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  Google Scholar 

  • Frary A, Presting GG, Tanksley SD (1996) Molecular mapping of the centromers of tomato chromosomes 7 and 9. Mol Genet Genomics 250:295–304

    Article  CAS  Google Scholar 

  • Frérot H, Petit C, Lefèbvre C, Gruber W, Collin C, Escarré J (2003) Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae). New Phytol 157:643–648

    Article  Google Scholar 

  • Frérot H, Lefèbvre C, Petit C, Collin C, Dos Santos A, Escarré J (2005) Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens. New Phytol 165:111–119

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from the recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppala J, Koch M, Mitchell-Olds T, Langley C, Savolainen O (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and Arabidopsis thaliana. Genetics 168:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Meerts P, van Isacker N (1997) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    Google Scholar 

  • van Ooijen JW (1999) LOD significant thresholds for QTL analysis in experimental populations of diploid species. Heredity 89:803–811

    Google Scholar 

  • van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Lindhout P (1997) Development of AFLP markers in barley. Mol Genet Genomics 254:330–336

    Article  CAS  Google Scholar 

  • Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384

    Article  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes as identified by comparative EST analysis. New Phytol 170:753–766

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC, Boca Raton, pp. 171–188

    Google Scholar 

  • Stam P (1993) Construction of integrated linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stam P, van Ooijen JW (1996) JOINMAP version 3.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de-Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Thomine S, Rongchen W, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci 97:4991–4996

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP®: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker JHA, McGrath SP (2004) Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytol 163:299–312

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGraph SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535—543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Diana Rigola (Lab of Genetics, Wageningen University, The Netherlands) for providing the Thlaspi caerulescens EST data prior to publication and to Fangjie Zhao (Agriculture and Environment Division, IACR-Rothamsted, UK) for providing us with seeds of the Ganges accession. We thank Maarten Koornneef for critically reading the manuscript and Petra van den Berg, Fien Meijer-Dekens and Richard Flinkers for their technical advice and assistance. This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek-Genomics (NWO) Grant (050-10-166) and the European Union-PHYTAC project (QLRT−2001-00429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. X. Deniau.

Additional information

Communicated by O. Savolainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deniau, A.X., Pieper, B., Ten Bookum, W.M. et al. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens . Theor Appl Genet 113, 907–920 (2006). https://doi.org/10.1007/s00122-006-0350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0350-y

Keywords

Navigation