Skip to main content
Log in

Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The impact of deficit and excess of soil water on plant growth, morphological plant features, N and P plant nutrition, soil properties, Rhizobium nodulation and the symbiosis between arbuscular mycorrhizal (AM) fungi and Lotus tenuis Waldst. & Kit. were studied in a saline-sodic soil. Water excess treatment decreased root growth by 36% and increased shoot growth by 13% whereas water deficit treatment decreased both root and shoot growth (26 and 32%, respectively). Differences between stress conditions on shoot growth were due to the ability of L. tenuis to tolerate low oxygen concentration in the soil and the sufficiency of nutrients in soil to sustain shoot growth demands. Water excess treatment decreased pH, and increased available P and labile C in soil. Water deficit treatment decreased available P and also increased labile C. In general, N and P acquisition were affected more by water excess than water deficit. The number of nodules per gram of fresh roots only increased in water excess roots (97%). Under both stress conditions there was a significant proportion of roots colonized by AM fungi. Compared to control treatment, arbuscule formation decreased by 55 and 14% under water excess and water deficit, respectively. Vesicle formation increased 256% in water excess treatment and did not change under water deficit treatment. L. tenuis plants subjected to water deficit or excess treatments could grow, nodulated and maintained a symbiotic association with AM fungi by different strategies. Under water excess, L. tenuis plants decreased root growth and increased shoot growth to facilitate water elimination by transpiration. Under water deficit, L. tenuis plants decreased root growth but also shoot growth which in turn significant decreased the shoot/root ratio. In the present study, under water excess conditions AM fungi reduced nutrient transfer structures (arbuscules), the number of entry points and spore, and hyphal densities in soil, but increased resistance structures (vesicles). At water deficit, however, AM fungi reduced external hyphae and arbuscules to some extent, investing more in maintaining a similar proportion of vesicles in roots and spores in soil compared to control treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhizal

AC:

arbuscular colonization

VC:

vesicular colonization

HO:

hyphae only colonization

EP:

entry points, mc total root length colonized, ac root length colonized by arbuscules, vc root length colonized by vesicles, ho root length colonized by hyphae only, sp number of spores, hy hyphal density

RGR:

relative growth rate

RCR:

relative colonization rate

SI:

susceptibility index

References

  • Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Alvarez S, Guerrero MC (2000) Enzymatic activities associated with decomposition of particulate organic matter in two sahllow ponds. Soil Biol Biochem 32:1941–1951

    Article  CAS  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal systems. VII. A detailed study of the effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • An Z-Q, Hendrix JW (1988) Determining viability of endogonaceous spores with a vital stain. Mycologia 80:259–261

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Augé RM, Moore JL, Stutz JC, Sylvia DM, Al-Agely AK, Saxton AM (2003) Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156

    Article  PubMed  Google Scholar 

  • Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Ayling SM, Smith SE, Smith FA, Kolesik P (1997) Transport processes at the plant–fungus interface in mycorrhizal associations: physiological studies. Plant Soil 196:305–310

    Article  CAS  Google Scholar 

  • Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci 34:733–750

    Article  CAS  Google Scholar 

  • Bearden BN (2001) Influence of arbuscular mycorrhizal fungi on soil structure and soil water characteristics of vertisols. Plant Soil 229:245–258

    Article  CAS  Google Scholar 

  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Caravaca F, Alguacil MM, Hernández JA, Rodán A (2005) Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci 169:191–197

    Article  CAS  Google Scholar 

  • Carvalho LM, Caçador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  Google Scholar 

  • Chalk PM, Waring SA (1970) Evaluation of rapid test for assesing N availability in wheat soils. I: Correlation with plant indices of availability obtained in pot culture. Aust J Exp Agric Anim Husb 10:298–305

    Article  CAS  Google Scholar 

  • Daniels N, Skipper H (1982) Methods for the recovery and cuantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, MN, pp 29–35

    Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Escudero VG, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla S Nd, Dreyfus B, âBâ AM (2007) Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–166

    Article  PubMed  CAS  Google Scholar 

  • García I, Mendoza R (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174

    Article  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261–268

    Article  CAS  Google Scholar 

  • Hiler EA, van Bavel CHM, Hossain MM, Jordan WR (1972) Sensitivity of southern peas to plant water deficit at three growth stages. Agron J 64:60–64

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. In: Black CA, Evans DD, White JR, Ensminger GE, Clarck FE (eds) Method of soil analysis, Part 2. Chemical and microbiological properties. Prentice Hall, Englewood Cliffs, p 80

    Google Scholar 

  • Jackson MB, Drew MC (1984) Effect of flooding on growth and metabolism of herbaceous plant. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 47–128

    Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042

    Article  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology 7:706–712

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury RW, Epstein E, Peary RW (1984) Physiological responses to salinity in selected lines of wheat. Plant Physiol 74:417–423

    PubMed  CAS  Google Scholar 

  • Kleiman ID, Cogliatti DH, Santa María GE (1992) Effect of hypoxia on growth and nutrients acquisition of Lolium multiflorum plants. Turrialba 42:210–219

    CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego, New York

    Google Scholar 

  • Lavado RS, Rubio G, Alconada M (1992) Grazing management and soil salinization in two Pampean natraqualfs. Turrialba 42:500–508

    Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Mc Gonigle TP, Miller MH, Evans DG, Fairchaild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mendoza R, Barrow NJ (1987) Characterizing the rate of reaction of some Argentinian soils with phosphate. Soil Sci 143:105–112

    Article  CAS  Google Scholar 

  • Mendoza R, Escudero V, García I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275:305–315

    Article  CAS  Google Scholar 

  • Mendoza R, Pagani E (1997) Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J Plant Nut 20:625–639

    Article  CAS  Google Scholar 

  • Mendoza R, Pagani E, Pomar MC (2000) Population variation of Lotus glaber and its relationship with P uptake from soil. Ecología Austral 10:3–14

    Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Miller SP, Bever J (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119:586–592

    Article  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51–58

    Article  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Chemical and microbiological properties. . ASA, SSSA, Madison, Wis, pp 403–430

    Google Scholar 

  • Pereira JS, Chaves MM (1995) Plant responses to drought under climate change in Mediterranean-type ecosystems. In: Moreno JM, Oechel WC (eds) Global change and mediterranean-type ecosystems, ecology studies. vol. 117. Springer, Berlin, pp 140–160

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Ponnamperuma FN (1972) Chemistry of submerged soils. Adv Agron 24:29–96

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1740–1750

    Article  CAS  Google Scholar 

  • Pugh R, Witty JF, Mytton LR, Minchin FR (1995) The effect of waterlogging on nitrogen fixation and nodule morphology in soil grown white clover (Trifolium repens L.). J Exp Bot 46:285–290

    Article  CAS  Google Scholar 

  • Querejeta JE, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417

    Article  CAS  Google Scholar 

  • Richards L (1974) Diagnóstico y Rehabilitación de Suelos Salinos y Sódicos. Departamento de Agricultura de los Estados Unidos de América. Editorial Limusa. México.

  • Richter M, Von Wistinghausen E (1981) Unterscheidbarkeit von humusfraktione in boden bei unterscheidlicher bewirtschaftung. Z Pflanzenernaeht Bodenk 144:395–406

    Article  CAS  Google Scholar 

  • Rogers ME, West DW (1993) The effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium species. An Bot 72:503–509

    Article  Google Scholar 

  • Rubio G, Casasola G, Lavado RS (1995) Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichment. Oecologia 102:102–105

    Google Scholar 

  • Rubio G, Oesterheld M, Alvarez CR, Lavado RS (1997) Mechanisms for the increase in phosphorus uptake of waterlogged plants: Soil phosphorus availability, root morphology and uptake kinetics. Oecologia 112:150–155

    Article  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhhizal symbiosis and alleviation of osmotic stress. New perspecitves for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosyst Environ 60:175–181

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242

    PubMed  CAS  Google Scholar 

  • Sah RN, Mikkelsen DS (1989) Phosphorus behavior in flooded, drained soils. I. Effects on phosphorus sorption. Soil Sci Soc Am J 53:1718–1722

    Article  CAS  Google Scholar 

  • Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ (2004) Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol 161:675–682

    Article  PubMed  Google Scholar 

  • Schellenbaum L, Sprenger N, Schüepp H, Wiemken A, Boller T (1999) Effects of drought, transgenic expression of a fructan synthesising enzyme and of a mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol 142:67–77

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal simbiosis, 2nd edn. Academic Press, San Diego, p 605

    Google Scholar 

  • Stevens KJ, Peterson RL (1996) The effect of a water gradient on the vesicular–arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife). Mycorrhiza 6:99–104

    Article  Google Scholar 

  • Stevens KJ, Spender SW, Peterson RL (2002) Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza 12:277–283

    Article  PubMed  CAS  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicular–arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in Sustainable Agriculture. ASA Spec. Publ. No. 54. Madison, pp 101–124

  • Szaboles I (1991) Desertification and salinization. In: Choukr-Allah R (ed) Plant Salinity Research New Challenges, pp 3–18

  • Teakle NL, Flowers TJ, Real D, Colmer TD (2007) Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+and Cl from the xylem. J Exp Bot 58:2169–2180

    Article  PubMed  CAS  Google Scholar 

  • Teakle NL, Real D, Colmer TD (2006) Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil 289:369–383

    Article  CAS  Google Scholar 

  • Teo YH, Beyrouty CA, Norman BJ, Norman RJ, Gbur EE (1994) Nutrient supplying capacity of a paddy rice soil. J Plant Nutr 17:1983–2000

    CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    Article  CAS  Google Scholar 

  • Vignolio OR, Fernández ON, Maceira NO (1996) Responses of different age of Lotus tenuis and Lotus corniculatus (Leguminosae) plants to flooding. Rev de la Fac de Agronomía, La Plata 101:57–66

    Google Scholar 

  • Vignolio OR, Fernández ON, Maceira NO (1999) Flooding tolerance in five populations of Lotus glaber Mill (Syn. Lotus tenuis Waldst. et. Kit.). Aust J Agric Res 50:555–559

    Article  Google Scholar 

  • Willet IR (1989) Causes and prediction of changes in extractable phosphorus during flooding. Aust J Soil Res 27:45–54

    Article  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  PubMed  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Botanical Studies 48:147–158

    Google Scholar 

Download references

Acknowledgements

The authors thank Ing. Agr. Liliana Marbán for technical assistance with the analysis of soil properties. Special thanks to Dr H. D. Ginzo for reviewing English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana García.

Additional information

Responsible Editor: Timothy D. Colmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, I., Mendoza, R. & Pomar, M.C. Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant Soil 304, 117–131 (2008). https://doi.org/10.1007/s11104-007-9526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9526-8

Keywords

Navigation