Skip to main content
Log in

Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The seasonality of arbuscular mycorrhizal (AM) fungi–plant symbiosis in Lotus glaber Mill. and Stenotaphrum secundatum (Walt.) O.K. and the association with phosphorus (P) plant nutrition were studied in a saline-sodic soil at the four seasons during a year. Plant roots of both species were densely colonized by AM fungi (90 and 73%, respectively in L. glaber and S. secundatum) at high values of soil pH (9.2) and exchangeable sodium percentage (65%). The percentage of colonized root length differed between species and showed seasonality. The morphology of root colonization had a similar pattern in both species. The arbuscular colonization fraction increased at the beginning of the growing season and was positively associated with increased P concentration in both shoot and root tissue. The vesicular colonization fraction was high in summer when plants suffer from stress imposed by high temperatures and drought periods, and negatively associated with P in plant tissue. Spore and hyphal densities in soil were not associated with AM root colonization and did not show seasonality. Our results suggest that AM fungi can survive and colonize L. glaber and S. secundatum roots adapted to extreme saline-sodic soil condition. The symbiosis responds to seasonality and P uptake by the host altering the morphology of root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott L, Robson A (1991) Factors influencing the occurrence of vesicular arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75:773–776

    Article  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and peek into the 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal systems. VII. A detailed study of the effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • Bentivenga SP, Hetrick BAD (1992) Seasonal and temperature effects on mycorrhizal activity and dependence of cool- and warm-season tallgrass prairie grasses. Can J Bot 70:1596–1602

    Article  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105

    Article  Google Scholar 

  • Blaszkowski J, Madej T, Tadych M (1998) Entrophospora baltica sp. nov. and Glomus fuegianum, two species in the Glomales from Poland. Mycotaxon 68:165–184

    Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Nitrogen total. In: Black CA (ed) Methods in soil analysis: agronomy. American Society of Agronomy. Inc. Madison, Wisconsin, USA, pp 595–624

    Google Scholar 

  • Carvalho LM, Correia PM, Martins-Loução MA (2004) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  PubMed  Google Scholar 

  • Daniels N, Skipper H (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathology Society. St. Paul, MI, USA, pp 29–35

    Google Scholar 

  • DeMars BG, Boerner REJ (1995) Mycorrhizal dynamics of three woodland herbs of contrasting phenology along topographic gradients. Am J Bot 82:1426–1431

    Article  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Escudero VG, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Gavito ME, Varela L (1993) Seasonal dynamic of mycorrhizal associations in maize fields under low input agriculture. Agric Ecosyst Environ 45:275–282

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Graham JH (1986) Citrus mycorrhizae: potential benefits and interactions with pathogens. HortScience 21:1302–1306

    Google Scholar 

  • Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, México. Mycorrhiza 8:267–270

    Article  Google Scholar 

  • Ingham E, Wilson M (1999) The mycorrhizal colonization of six wetland species at sites differing in land use history. Mycorrhiza 9:233–235

    Article  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. In: Black CA, Evans DD, White JR, Ensminger GE, Clarck FE (eds) Method of soil analysis, Part 2. Chemical and microbiological properties. Prentice Hall, Englewood Cliffs, p 801

    Google Scholar 

  • Jain PK, Paliwal K, Dixon RK, Gjerstad DH (1989) Improving productivity of multipurpose trees on substandard soil in India. J For 87:38–42

    Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungi. Ecology 73:2034–2042

    Article  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Landwehr M, Hildebradt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lavado RS, Rubio G, Alconada M (1992) Grazing management and soil salinization in two Pampean natraqualfs. Turrialba 42:500–508

    Google Scholar 

  • Lugo MA, Cabello MN (2003) Arbuscular mycorrhizal fungi in a mountain grassland II: Seasonal variation of colonization studied, along with its relation to grazing and metabolic host type. Mycologia 95:407–415

    Article  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchaild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mendoza R, Pagani E, Pomar MC (2000) Variabilidad poblacional de Lotus glaber en relación con la absorción de fósforo en suelo. Ecol Austral 10:3–14

    Google Scholar 

  • Mendoza R, Goldmann V, Rivas J, Escudero V, Pagani E, Collantes M, Marban L (2002) Poblaciones de hongos micorrízicos arbusculares en relación con las propiedades del suelo y de la planta hospedante en pastizales de Tierra del Fuego. Ecol Austral 12:105–116

    Google Scholar 

  • Mendoza R, Escudero V, García I (2005) Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil. Plant Soil 275:305–315

    Article  CAS  Google Scholar 

  • Miller S, Bever J (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119:586–592

    Article  PubMed  Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems. Oecologia 94:229–234

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Richter M, von Wistinghausen E (1981) Unterscheidbarkeit von humusfraktione in boden bei unterscheidlicher bewirtschaftung. Z Pflanzenernaehr Bodenkd 144:395–406

    Article  CAS  Google Scholar 

  • Rowell JG, Walters DE (1976) Analysing data with repeated observations on each experimental unit. J Agric Sci 87:423–432

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Sanders IR, Fitter AH (1992) The ecology and functioning of vesicular–arbuscular mycorrhizas in co-existing grassland species. I. Seasonal patterns of mycorrhizal occurrence and morphology. New Phytol 120:517–524

    Article  Google Scholar 

  • Singüeza C, Espejel I, Allen EB (1996) Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza 6:151–157

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Ter Braak CJF (1987–1992) CANOCO—a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, NY

  • Vestberg M (1995) Ocurrence of some Glomales in Finland. Mycorrhiza 5:329–336

    Article  Google Scholar 

  • Wang FY, Liu RJ, Lin XG (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ Jr, Costa Maia L (2003) Tolerance of mycorrhizaed banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Article  Google Scholar 

Download references

Acknowledgement

Special thanks to Dr. H. D. Ginzo for commenting and revising the written English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo E. Mendoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, I.V., Mendoza, R.E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17, 167–174 (2007). https://doi.org/10.1007/s00572-006-0088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0088-z

Keywords

Navigation