Skip to main content
Log in

The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The regulator MdERF1B in the apple (Malus × domestica) ethylene pathway mainly acts on MdMYB9 and MdMYB11 to regulate anthocyanin and proanthocyanidin accumulation.

Abstract

Dietary anthocyanins and proanthocyanidins (PAs) have health benefits for humans, and are associated with decreased risks of coronary heart disease and cancer. Ethylene can enhance reddening of apple (Malus × domestica), but the regulatory mechanism is poorly understood. In this study, an ethylene response factor (ERF), MdERF1B, was identified and functionally characterized. ‘Orin’ calli overexpressing MdERF1B were generated and then analyzed by quantitative reverse transcription-PCR. Compared with the control calli, the MdERF1B-overexpressing calli showed increased expression levels of MdACO1, MdERF1, and MdERF3 in the ethylene pathway and MdCHS, MdCHI, MdF3H, MdDFR, MdANS, MdLAR, MdANR, MdMYB9 and MdMYB11 in the flavonoid pathway. As a result, the levels of anthocyanins and PAs were significantly increased in the MdERF1B-overexpressing calli. MdERF1B interacted with MdMYB9, MdMYB1, and MdMYB11 proteins in yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays. Furthermore, in yeast one-hybrid and electrophoretic mobility shift assays, MdERF1B also bound to the promoters of MdMYB9, MdMYB1, and MdMYB11. In a luciferase reporter assay, MdERF1B mainly activated proMdMYB9 and proMdMYB11, promoting their expression levels. This was in agreement with MdERF1B’s overexpression in calli, which barely affected MdMYB1 expression. Taken together, our findings provide an insight into the regulatory mechanisms in the ethylene pathway that increase anthocyanin and PA accumulation in apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PAs:

Proanthocyanidins

PAL:

Phenylalanine ammonia-lyase

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

F3H:

Flavanone 3-hydroxylase

DFR:

Dihydroflavonol 4-reductase

ANS:

Anthocyanidin synthase

UFGT:

Glycosyltransferase

LAR:

Leucoanthocyanidin reductase

ANR:

Anthocyanidin reductase

FLS:

Flavonol synthase

GFP:

Green fluorescent protein

GST:

Glutathione S-transferase

His:

Histidine

Anti:

Antibody

MS:

Murashige and Skoog

YFP:

Yellow fluorescent protein

Trp:

Tryptophan

Leu:

Leucine

Ade:

Adenine

CDS:

Coding DNA sequence

3-AT:

3-Amino-1,2,4-triazole

BiFC:

Bimolecular fluorescence complementation assay

DAFB:

Days after full bloom

EMSA:

Electrophoretic mobility shift assay

TFs:

Transcription factors

DMACA:

4-Dimethylaminocinnamaldehyde

qRT-PCR:

Quantitative reverse transcription-PCR

LUC:

Luciferase

ET:

Ethylene

6-BA:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

JA:

Jasmonate

MBW:

MYB–bHLH–WD40

MeJA:

Methyl jasmonate

bHLH:

Basic helix–loop–helix

Y1H:

Yeast one-hybrid

Y2H:

Yeast two-hybrid

4-MUG:

4-Methylumbellifery-β-d-glucuronide hydrate

References

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717

    Article  CAS  Google Scholar 

  • An XH, Tian Y, Chen KQ, Liu XJ, Liu DD, Xie XB, Cheng CG, Cong PH, Hao YJ (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol 56:650–662

    Article  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  CAS  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  CAS  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  Google Scholar 

  • Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De BS, Vanden BR, De ML, Yoshizumi T, Matsui M, Inzé D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162:319–332

    Article  CAS  Google Scholar 

  • El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latché A, Pech JC, Bouzayen M (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant 119:175–182

    Article  CAS  Google Scholar 

  • Espley RV, Hellens RP, Jo P, Stevenson DE, Sumathi KA, Allan AC (2007) Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  Google Scholar 

  • Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  Google Scholar 

  • Giusti M, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Current protocols in food analytical chemistry. Wiley, Hoboken, F1.2.1–F1.2.13

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  • Henry-Kirk RA, Plunkett B, Hall M, Mcghie T, Allan AC, Wargent JJ, Espley RV (2018) Solar UV light regulates flavonoid metabolism in apple (Malus × domestica). Plant Cell Environ 41:675–688

    Article  CAS  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Ji XH, Wang YT, Zhang R, Wu SJ, An MM, Li M, Wang CZ, Chen XL, Zhang YM, Chen XS (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f.niedzwetzkyana). Plant Cell Tissue Organ Cult 120:325–337

    Article  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  Google Scholar 

  • Kende H (2003) Ethylene biosynthesis. Annu Rev Plant Biol 44:283–307

    Article  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A (2016) Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J 88:735–748

    Article  CAS  Google Scholar 

  • Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A (2017) The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29:1316–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister CE, Lancaster JE, Walker JRL (2015) Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric 71:313–320

    Article  Google Scholar 

  • Liu Q, Wen CK (2012) Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes. Plant Physiol 158:1193–1207

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchezserrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  Google Scholar 

  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    Article  CAS  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker U (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  CAS  Google Scholar 

  • Manganaris GA, Vicente AR, Crisosto CH, Labavitch JM (2008) Effect of delayed storage and continuous ethylene exposure on flesh reddening of ‘Royal Diamond’ plums. J Sci Food Agric 88:2180–2185

    Article  CAS  Google Scholar 

  • Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009) Arabidopsis NAC transcription factor, ANAC078, regulates flavonoids biosynthesis under high. Plant Cell Physiol 50:2210–2222

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    Article  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2144

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  Google Scholar 

  • Ohta MTM, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38

    Article  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  CAS  Google Scholar 

  • Pré M, Atallah M, Champion A, De VM, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia Is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  CAS  Google Scholar 

  • Ross JA, Kasum CM (2002) DIETARY FLAVONOIDS: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  Google Scholar 

  • Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  CAS  Google Scholar 

  • Umemura H, Otagaki S, Wada M, Kondo S, Matsumoto S (2013) Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit. Planta 238:65–76

    Article  CAS  Google Scholar 

  • Wang Z, Dilley DR (2001) Aminoethoxyvinylglycine, combined with ethephon, can enhance red color development without over-ripening apples. HortScience 36:328–331

    CAS  Google Scholar 

  • Wang A, Tan D, Takahashi A, Zhong Li T, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  CAS  Google Scholar 

  • Wang L, Lee IM, Zhang SM, Blumberg JB, Buring JE, Sesso HD (2009) Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr 89:905–912

    Article  CAS  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f.niedzwetzkyana). Plant J 90:276–292

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  Google Scholar 

  • Xie XB, Shen LI, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  CAS  Google Scholar 

  • Xu H, Wang N, Liu J, Qu C, Wang Y, Jiang S, Lu N, Wang D, Zhang Z, Chen X (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol 94:149–165

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yao G, Ming M, Allan AC, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J (2017) Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J 92:437–451

    Article  CAS  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  Google Scholar 

  • Zarei A, Körbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331

    Article  CAS  Google Scholar 

  • Zeng JK, Li X, Xu Q, Chen JY, Yin XR, Ferguson IB, Chen KS (2015) EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnol J 13:1325–1334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research Project (2016YFC0501505) and the National Natural Science Foundation of China (31572091, 31730080). We thank Shujing Wu Laboratories for providing the vectors. We thank Lesley Benyon, PhD, and Jennifer Smith, PhD, from Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

XC and JZ: conceived and designed the experiments. JZ and HX: analyzed the data. NW, SJ, HF, ZZ, GY, YW, MS and LX: contributed reagents/materials/analysis tools. JZ: wrote the paper.

Corresponding author

Correspondence to Xuesen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Primers used for qRT-PCR analysis. (TIF 325 KB)

Table S2 Primers used for cloning CDSs and promoters. (TIF 412 KB)

11103_2018_770_MOESM3_ESM.tif

Fig. S1 RAA motifs in proMdMYB1, proMdMYB9 and proMdMYB11. Transcriptional start sites (ATG) are indicated with +1. (TIF 133 KB)

Fig. S2 Alignment of MdERF1B and AtERF1 protein sequences. (TIF 1389 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, H., Wang, N. et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Mol Biol 98, 205–218 (2018). https://doi.org/10.1007/s11103-018-0770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0770-5

Keywords

Navigation