Skip to main content

Advertisement

Log in

Coincident sequence-specific RNA degradation of linked transgenes in the plant genome

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baulcombe D (2002a) RNA silencing. Curr Biol 12:R82–R84

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe D (2002b) Viral suppression of systemic silencing. Trends Microbiol 10:306–308

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274

    Article  PubMed  CAS  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Van Montagu M, Depicker A (2001) Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol Biol 46:433–445

    Article  PubMed  Google Scholar 

  • De Carvalho Niebel F, Frendo P, Van Montagu M, Cornelissen M (1995) Post-transcriptional cosuppression of β-1, 3-glucanase genes does not affect accumulation of transgene nuclear mRNA. Plant Cell 7:347–358

    Article  PubMed  Google Scholar 

  • De Carvalho F, Gheyson G, Kushnir S, van Montagu M, Inzé D, Castresana C (1992) Suppression of β-1, 3-glucanase transgene expression in homozygous plants. EMBO J 11:2595–2602

    PubMed  Google Scholar 

  • Dehio C, Schell J (1994) Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc Natl Acad Sci USA 91:5538–5542

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Kanazawa A, Kusaba M, Masuta C (2003) A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol Biol Rep 21:51–58

    Article  CAS  Google Scholar 

  • Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48:1050–1060

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Brown S, Han YH, Ishizuka M, Lowe A, Solis AGA, Grierson D (1998) A transgene with repeated DNA causes high-frequency, post-transcriptional suppression of ACC oxidase gene expression in tomato. Plant J 15:737–746

    Article  CAS  Google Scholar 

  • Harpster MH, Townsend JA, Jones JDG, Bedbrook J, Dunsmuir P (1988) Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco, sugarbeet and oilseed rape callus tissue. Mol Gen Genet 212:182–190

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ, Molnàr A, Jones A, Baulcombe DC (2006) Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci USA 103:14994–15001

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SLA, Warkentin TD, Delong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Jakowitsch J, Papp I, Moscone EA, van der Winden J, Matzke M, Matzke AJM (1999) Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans. Plant J 17:131–140

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA (1995) Cosuppression, flower color patterns, and metastable gene expression states. Science 268:686–691

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  PubMed  CAS  Google Scholar 

  • Kalantidis K, Tsagris M, Tabler M (2006) Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. Plant J 45:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A (2008) RNA silencing manifested as visibly altered phenotypes in plants. Plant Biotechnol 25:423–435

    Article  CAS  Google Scholar 

  • Kanazawa A, O’Dell M, Hellens RP, Hitchin E, Metzlaff M (2000) Mini-scale method for nuclear run-on transcription assay in plants. Plant Mol Biol Rep 18:377–383

    Article  CAS  Google Scholar 

  • Kanazawa A, O’Dell M, Hellens RP (2007a) Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. Plant Cell Physiol 48:638–647

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, O’Dell M, Hellens RP (2007b) The binding of nuclear factors to the as-1 element in the CaMV 35S promoter is affected by cytosine methylation in vitro. Plant Biol 9:435–441

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim B, Goto K, Masuta C (2011a) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J 65:156–168

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, Inaba J, Kasai M, Shimura H, Masuta C (2011b) RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: a potent gene silencing system to produce a plant that does not carry a transgene but has altered traits. Plant Signal Behav 6:1090–1093

    Article  PubMed  Google Scholar 

  • Kasai A, Kasai K, Yumoto S, Senda M (2007) Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implications for inducing endogenous RNA silencing of chalcone synthase genes. Plant Mol Biol 64:467–479

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

  • Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225

    Article  CAS  Google Scholar 

  • Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida ‘Red Star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    Article  PubMed  CAS  Google Scholar 

  • Krizova K, Fojtova M, Depicker A, Kovarik A (2009) Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. Plant Physiol 149:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Kunz C, Schöb H, Stam M, Kooter JM, Mens F (1996) Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression. Plant J 10:437–450

    Article  CAS  Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Lapidot M, Pilpel Y (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 7:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Luff B, Pawlowski L, Bender J (1999) An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell 3:505–511

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19:943–958

    Article  PubMed  CAS  Google Scholar 

  • Majewski P, Wołoszyńska M, Jańska H (2009) Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: genetic and environmental regulation. J Exp Bot 60:1163–1178

    Article  PubMed  CAS  Google Scholar 

  • Marjanac G, Karimi M, Naudts M, Beeckman T, Depicker A, De Buck S (2009) Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytol 184:851–864

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Hong J-S, Tabayashi N, Ito A, Masuta C, Matsumura T (2007) Development of Cucumber mosaic virus as a vector modifiable for different host species to produce therapeutic proteins. Planta 225:277–286

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke AJM, Kooter JM (2001) RNA: guiding gene silencing. Science 293:1080–1083

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJM (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    PubMed  CAS  Google Scholar 

  • Melquist S, Bender J (2003) Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev 17:2036–2047

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, van der Winden J, Matzke MA, Matzke AJM (1999) Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J 18:241–248

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff M, O’Dell M, Cluster PD, Fravell RB (1997) RNA-mediated degradation and chalcone synthase A silencing in petunia. Cell 88:845–854

    Article  PubMed  CAS  Google Scholar 

  • Meza TJ, Kamfjord D, Håkelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Shirasawa-Seo N, Iwai T, Nakamura S, Honkura R, Ohashi Y (2002) Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 160:343–352

    PubMed  CAS  Google Scholar 

  • Mlotshwa S, Pruss GJ, Peragine A, Endres MW, Li J, Chen X, Poethig RS, Bowman LH, Vance V (2008) DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS One 3:e1755

    Article  PubMed  Google Scholar 

  • Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225:365–379

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muskens MWM, Vissers APA, Mol JNM, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu A, Masuta C, Senda M, Matsuura H, Kasai A, Hong JS, Kitamura K, Abe J, Kanazawa A (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J 5:778–790

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • O’Dell M, Metzlaff M, Flavell RB (1999) Post-transcriptional gene silencing of chalcone synthase in transgenic petunias, cytosine methylation and epigenetic variation. Plant J 18:33–42

    Article  Google Scholar 

  • Que Q, Wang H-Y, English JJ, Jorgensen RA (1997) The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense condons in the transgene conding sequence. Plant Cell 9:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Rang A, Linke B, Jansen B (2005) Detection of RNA variants transcribed from the transgene in roundup ready soybean. Eur Food Res Technol 220:438–443

    Article  CAS  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Vijn I, Rebocho A, van Blockland R, Roelofs D, Mol JNM, Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11:436–440

    Article  PubMed  CAS  Google Scholar 

  • Silhavy D, Burgyán J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    Article  PubMed  CAS  Google Scholar 

  • Stam M, Viterbo A, Mol JNM, Kooter JM (1998) Position-dependent methylation and transcriptional silencing of transgenes in inverted repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol 18:6165–6177

    PubMed  CAS  Google Scholar 

  • Stam M, de Bruin R, van Blokland R, ten Hoorn RAL, Mol JNM, Kooter JM (2000) Distinct features of post-transcriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. Plant J 21:27–42

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L, Bánfalvi Z, Burgyán J (2003) Low temperature inhibits RNA silencing-mediated defense by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  Google Scholar 

  • van Houdt H, Kovařik A, van Montagu M, Depicker A (2000) Cross-talk between posttranscriptionally silenced neomycin phosphotransferase II transgenes. FEBS Lett 467:41–46

    Article  PubMed  Google Scholar 

  • van Leeuwen W, Ruttink T, Borst-Vrenssen AW, van der Plas LH, van der Krol AR (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J Exp Bot 52:949–959

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Palauqui JC, Elmayan T, Moffat B (1995) Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants. Mol Gen Genet 248:311–317

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Nussaume L, Palauqui J-C, Quillere I, Elmayan T (1997) A transcriptionally active state is required for post-transcriptional silencing (consuppression) of nitrate reductase host genes and transgenes. Plant Cell 9:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 5:444–451

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005a) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167:751–760

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005b) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30

    Article  PubMed  Google Scholar 

  • Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs directs potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mike O’Dell for helpful discussions and maintenance of plant materials. We also thank Cathie Martin for the Antirrhinum ubiquitin DNA clone, Mineo Senda for small RNA analysis, Neal Gutterson and Richard Jorgensen for plant materials, and Michael Metzlaff, Richard B. Falavell, Kenji Nakahara, Tetsuya Yamada and Hanako Shimura for valuable comments during the course of this work. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanazawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasai, M., Koseki, M., Goto, K. et al. Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. Plant Mol Biol 78, 259–273 (2012). https://doi.org/10.1007/s11103-011-9863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9863-0

Keywords

Navigation