Skip to main content
Log in

A simple and rapid method to detect plant siRNAs using nonradioactive probes

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Small interfering RNAs (siRNAs) are key molecules in RNA silencing, which includes posttranscriptional gene silencing, cosuppression, quelling, and RNA interference. The presence of siRNAs indicates RNA silencing in cells. We present a method of detecting siRNAs using nonradioactive probes that involves isolating the small RNA fraction, separating siRNAs using denaturing gel electrophoresis, and performing a Northern blot analysis under low-stringency hybridization conditions. We used digoxigenin-labeled DNA probes for hybridization and detected siRNAs in petunia and rice plants exhibiting silenced phenotypes. This method is a simple and rapid way to detect siRNAs without using radioisotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaMV:

cauliflower mosaic virus

CHS-A:

chalcone synthase-A

NOS:

nopaline synthase

PAGE:

polyacrylamide gel electrophoresis

PEG:

polyethylene glycol

PTGS:

posttranscriptional gene silencing

RNAi:

RNA interference

siRNAs:

small interfering RNAs

References

  • Bernstein E, Caudy AA, Hammond SM, and Hannon GJ (2001) Role of a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, and Tuschl T (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 15: 188–200.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ and Baulcombe DC (1999) A species of small RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Voinnet O, Chappell L, and Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21: 4671–4679.

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, and Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing inDrosophila cells. Nature 404: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, O'Dell M, Hellens RP, Hitchin E, and Metzlaff M (2000) Mini-scale method for nuclear run-on transcription assay in plants. Plant Mol Biol Rep 18: 377–383.

    Article  CAS  Google Scholar 

  • Ketting RF, Fischer SEJ, Bernstein E, Sijen T, Hannon GJ, and Plasterk RHA (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC. elegans. Genes Dev 15: 2654–2659.

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, and Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605–1619.

    Article  PubMed  CAS  Google Scholar 

  • Masumura T, Kidzu K, Sugiyama Y, Mitsukawa N, Hibino T, Tanaka K, and Fujii S (1989) Nucleotide equence of a cDNA encoding a major rice glutelin. Plant Mol Biol 12: 723–725.

    Article  CAS  Google Scholar 

  • Masuta C, Ueda S, Suzuki M, and Uyeda I (1998) Evolution of a quadripartite hybrid virus by interspecific exchange and recombination between replicase components of two related tripartite RNA viruses. Proc Natl Acad Sci USA 95: 10487–10497.

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Matzke AJM, and Kooter JM (2001) RNA: guiding gene silencing. Science 293: 1080–1083.

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, and Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19: 5194–5201.

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff M, O'Dell M, Cluster PD, and Flavell RB (1997) RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88: 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Metzlaff M, O'Dell M, Hellens R, and Flavell RB (2000) Developmentally and transgene regulated nuclear processing of primary transcripts of chalcone synthase A in petunia. Plant J 23: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, and Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genesin trans. Plant Cell 2: 279–289.

    PubMed  CAS  Google Scholar 

  • O'Dell M, Metzlaff M, and Flavell RB (1999) Post-transcriptional gene silencing of chalcone synthase in transgenic petunias, cytosine methylation and epigenetic variation. Plant J 18: 33–42.

    Article  Google Scholar 

  • Parrish S, Fleenor J, Xu SQ, Mello C, and Fire A (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interferece. Mol Cell 6: 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RHA (2002) RNA silencing: the genomes immune system. Science 296: 1263–1265.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J and Russell DW (2001) Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Sijen T, Vijn I, Rebocho A, van Blockland R, Roelofs D, Mol JNM, and Kooter JM (2001) Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol 11: 436–440.

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, and Sharp PA (1999) Targeted mRNA degradation by double-stranded RNAin vitro. Genes Dev 13: 3191–3197.

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Lu H, and Erickson JW (2000) Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi inDrosophila embryos. Curr Biol 10: 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  • Zarmore PD (2002) Ancient pathways programmed by small RNAs. Science 296: 1265–1269.

    Article  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, and Bartel DP (2000) RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, K., Kanazawa, A., Kusaba, M. et al. A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol Biol Rep 21, 51–58 (2003). https://doi.org/10.1007/BF02773396

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773396

Key words

Navigation