Skip to main content
Log in

Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens-mediated genetic transformation has been routinely used in rice for more than a decade. However, the transformation efficiency of the indica rice variety is still unsatisfactory and much lower than that of japonica cultivars. Further improvement on the transformation efficiency lies in the genetic manipulation of the plant itself, which requires a better understanding of the underlying process accounting for the susceptibility of plant cells to Agrobacterium infection as well as the identification of plant genes involved in the transformation process. In this study, transient and stable transformation assays using different japonica and indica cultivars showed that the lower transformation efficiency in indica rice was mainly due to the low efficiency in T-DNA integration into the plant genome. Analyses of the global gene expression patterns across the transformation process in different varieties revealed major differences in the expression of genes responding to Agrobacterium within the first 6 h after infection and more differentially expressed genes were observed in the indica cultivar Zhenshan 97 (ZS), with a number of genes repressed early during infection. Microarray analysis revealed an important effect of plant defense response on Agrobacterium-mediated transformation. It has been shown that some genes which may be necessary for the transformation process were down-regulated in the indica cultivar ZS. This dataset provided a versatile resource for plant genomic research to understand the regulatory network of transformation process, and showed great promise for improving indica rice transformation using genetic manipulation of the rice genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS (2007) Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe Interact 20(1):41–52. doi:10.1094/mpmi-20-0041

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang YH, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146(2):703–715. doi:10.1104/pp.107.111302

    Article  PubMed  CAS  Google Scholar 

  • Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathol 69(4):320–323

    Article  Google Scholar 

  • Arias RS, Filichkin SA, Strauss SH (2006) Divide and conquer: development and cell cycle genes in plant transformation. Trends Biotechnol 24(6):267–273. doi:10.1016/j.tibtech.2006.04.007

    Article  PubMed  CAS  Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1994) Inheritance of Agrobacterium tumefaciens-induced tumorigenesis of soybean. Crop Sci 34(2):514–519

    Article  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488. doi:10.1007/s11103-008-9435-0

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436. doi:10.1146/annurev.phyto.45.062806.094427

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40(1):31–45. doi:10.1079/ivp2003501

    Article  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9(1):9–20. doi:10.1111/j.1462-5822.2006.00830.x

    Article  PubMed  CAS  Google Scholar 

  • Dan YH (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol Plant 44(3):149–161. doi:10.1007/s11627-008-9110-9

    Article  CAS  Google Scholar 

  • del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123(2):173–183. doi:10.1111/j.1399-3054.2004.00420.x

    Article  CAS  Google Scholar 

  • Ditt RF, Nester E, Comai L (2005) The plant cell defense and Agrobacterium tumefaciens. FEMS Microbiol Lett 247(2):207–213. doi:10.1016/j.femsle.2005.05.010

    Article  PubMed  CAS  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19(6):665–681. doi:10.1094/mpmi-19-0665

    Article  PubMed  CAS  Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform 7:191

    Article  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. doi:10.1093/bioinformatics/btg405

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150(4):1665–1676. doi:10.1104/pp.109.139873

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  Google Scholar 

  • Graham NS, Broadley MR, Hammond JP, White PJ, May ST (2007) Optimising the analysis of transcript data using high density oligonucleotide arrays and genomic DNA-based probe selection. BMC Genomics 8:344

    Article  PubMed  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91(16):7603–7607

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35(1–2):205–218

    Article  PubMed  CAS  Google Scholar 

  • Hong FX, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22):2825–2827. doi:10.1093/bioinformatics/btl476

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-Glucuronidase as a sensitive and versatile gene fusion marker in higher plant. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi:10.1038/nature05286

    Article  PubMed  CAS  Google Scholar 

  • Khanna HK, Paul JY, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant Microbe Interact 20(9):1048–1054. doi:10.1094/mpmi-20-9-1048

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Jeon H, Kim M (2002) Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tissue Organ Cult 71(3):237–244

    Article  CAS  Google Scholar 

  • Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Muller J, Hedrich R, Deeken R (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21(9):2948–2962. doi:10.1105/tpc.108.064576

    Article  PubMed  CAS  Google Scholar 

  • Leek JT, Monsen E, Dabney AR, Storey JD (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22(4):507–508. doi:10.1093/bioinformatics/btk005

    Article  PubMed  CAS  Google Scholar 

  • Li XQ, Liu CN, Ritchie SW, Peng JY, Gelvin SB, Hodges TK (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20(6):1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102(52):19231–19236. doi:10.1073/pnas.0506437103

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23(8):540–547. doi:10.1007/s00299-004-0843-6

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103(12):4658–4662. doi:10.1073/pnas.0600366103

    Article  PubMed  CAS  Google Scholar 

  • Liu CN, Li XQ, Gelvin SB (1992) Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol 20(6):1071–1087

    Article  PubMed  CAS  Google Scholar 

  • Lowe BA, Krul WR (1991) Physical, chemical, developmental, and genetic factors that modulate the Agrobacterium-Vitis interaction. Plant Physiol 96(1):121–129

    Article  PubMed  CAS  Google Scholar 

  • Maresh J, Zhang J, Lynn DG (2006) The innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. ACS Chem Biol 1(3):165–175. doi:10.1021/cb600051w

    Article  PubMed  CAS  Google Scholar 

  • Mauro AO, Pfeiffer TW, Collins GB (1995) Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Sci 35(4):1152–1156

    Article  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37(3):549–559

    Article  PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127. doi:10.1146/annurev.cellbio.22.011105.102022

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97(2):948–953

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9(3):317–333. doi:10.1105/tpc.9.3.317

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261(3):429–438

    Article  PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Deng XB, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8(5):873–886

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Nester EW, Vance V (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol Plant Microbe Interact 21(12):1528–1538. doi:10.1094/mpmi-21-12-1528

    Article  PubMed  CAS  Google Scholar 

  • Salman H, Abu-Arish A, Oliel S, Loyter A, Klafter J, Granek R, Elbaum M (2005) Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89(3):2134–2145. doi:10.1529/biophysj.105.060160

    Article  PubMed  CAS  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102(34):12265–12269. doi:10.1073/pnas.0502601102

    Article  PubMed  CAS  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5(8):354–357

    Article  PubMed  CAS  Google Scholar 

  • Smarrelli J, Watters MT, Diba LH (1986) Response of various cucurbits to infection by plasmid-harboring strains of Agrobacterium. Plant Physiol 82(2):622–624

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):1–26

    Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Dudoit S, Irizarry RA, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. Springer, New York, pp 397–420. doi:10.1007/0-387-29362-0_23

  • Szegedi E, Kozma PJ (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23(2):121–126

    Google Scholar 

  • Tenea GN, Spantzel J, Lee LY, Zhu YM, Lin K, Johnson SJ, Gelvin SB (2009) Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21(10):3350–3367. doi:10.1105/tpc.109.070607

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20(13):3596–3607. doi:10.1093/emboj/20.13.3596

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431(7004):87–92. doi:10.1038/nature02857

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31(3):826–832. doi:10.1093/nar/gkg183

    Article  PubMed  Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20(22):6550–6558

    Article  PubMed  Google Scholar 

  • van der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223. doi:10.1146/annurev.arplant.59.032607.092835

    Article  PubMed  Google Scholar 

  • Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35(2):219–236. doi:1796[pii]

  • Zaidi MA, Narayanan M, Sardana R, Taga I, Postel S, Johns R, McNulty M, Mottiar Y, Mao J, Loit E, Altosaar I (2006) Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agron Res 4(2):563–575

    Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang CH, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7(8):611–621

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36:W358–W363. doi:10.1093/nar/gkn276

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, He XW, Ying YH, Lu JF, Gelvin SB, Shou HX (2009) Expression of the Arabidopsis thaliana histone gene AtHTA1 enhances rice transformation efficiency. Mol Plant 2(4):832–837. doi:10.1093/mp/ssp038

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132(2):494–505. doi:10.1104/pp.103.020420

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760. doi:10.1016/j.cell.2006.03.037

    Article  PubMed  CAS  Google Scholar 

  • Zuo JR, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13(2):173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Program on Research and Development of Transgenic Plants, the National High Technology Research and Development Program of China (863 Program) and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tie, W., Zhou, F., Wang, L. et al. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Mol Biol 78, 1–18 (2012). https://doi.org/10.1007/s11103-011-9842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9842-5

Keywords

Navigation