Skip to main content
Log in

Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In an effort to improve the T-DNA-mediated transformation frequency of economically important crops, we investigated the possible enhancement effect of multiple copies of virG genes contained in Agrobacterium tumefaciens strains upon the transient transformation of celery, carrot and rice tissues. Four days after A. tumefaciens infection, we performed histochemical β-glucuronidase (GUS) assays to determine the frequency of transient transformation of calli from celery and carrot, and explants from rice and celery. Additional copies of octopine- and agropine-type virG genes in A. tumefaciens strains containing an agropine-type Ti-plasmid enhanced the frequency of transient transformation of celery and rice. This enhancement ranged from 25% to five-fold, depending upon the source of the virG gene and the plant tissues inoculated. For both rice and celery, we observed a greater enhancement of transformation using A. tumefaciens strains containing additional copies of an octopine-type virG gene than with strains harboring additional copies of an agropine-type virG gene. Multiple copies of virG genes contained in A. tumefaciens strains harboring a nopaline-type Ti-plasmid had a smaller enhancing effect upon the transformation of celery tissues, and no enhancing effect upon the transformation of rice. In contrast, we obtained a three-fold increase in the transient transformation frequency of carrot calli using an A. tumefaciens strain harboring a nopaline-type Ti-plasmid and additional copies of an octopine-type virG gene. Our results show that multiple copies of virG in A. tumefaciens can greatly enhance the transient transformation frequency of celery, carrot and rice tissues, and that this enhancement is influenced by both the type of Ti-plasmid harbored by A. tumefaciens and by the infected plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An G, Ebert PR, Mitra A, Ha SB: Binary vectors. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant Molecular Biology Manual, pp. A3/1-A3/19. Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  2. Bevan M: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).

    PubMed  Google Scholar 

  3. Canfield ML, Moore LW: Production of ethylene by Daucus carota inoculated with Agrobacterium tumefaciens and Agrobacterium rhizogenes. Z Pflanzenphysiol 112: 471–474 (1983).

    Google Scholar 

  4. Catlin D, McCormick S, Quiros CF: Celery transformation by Agrobacterium tumefaciens: Cytological and genetic analysis of transgenic plants. Plant Cell Rep 7: 100–103 (1988).

    Google Scholar 

  5. Chen CY, Wang L, Winans SC: Characterization of the supervirulent virG gene of the Agrobacterium tumefaciens plasmid pTiBo542. Mol Gen Genet 230: 302–309 (1991).

    PubMed  Google Scholar 

  6. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bin FY: Establishment of an efficient medium for anther culture of rice through comparative experimentation on nitrogen sources. Scient Sin 18: 659–668 (1975).

    Google Scholar 

  7. Culianez-Macia FA, Hepburn AG: The kinetics of T-strand production in a nopaline-type helper strain of Agrobacterium tumefaciens. Mol Plant-Microbe Interact 1: 207–214 (1988).

    Google Scholar 

  8. Davis ME, Lineberger RD, Miller AR: Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens. Plant Cell Tissue Organ Culture 24: 115–121 (1991).

    Google Scholar 

  9. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  10. Draper J, Scott R: Gene transfer to plants. In: Grierson D (ed) Plant Genetic Engineering, vol 1, pp. 38–81. Chapman and Hall, New York (1991).

    Google Scholar 

  11. Figurski DH, Helinski DR: Replication of an orgincontaining derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648–1652 (1979).

    PubMed  Google Scholar 

  12. Gelvin SB: Chemical signaling between Agrobacterium and its plant host. In: Verma DPS (ed) Molecular Signals in Plant-Microbe Communications, pp. 137–167. CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  13. Goodman TC, Montoya AL, Williams S, Chilton M-D: Sustained ethylene production in Agrobacterium-transformed carrot disks caused by expression of the T-DNA tms gene products. J Bact 167: 387–388 (1986).

    PubMed  Google Scholar 

  14. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580 (1983).

    PubMed  Google Scholar 

  15. Hood EE, Helmer GL, Fraley RT, Chilton M-D: The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bact 168: 1291–1301 (1986).

    PubMed  Google Scholar 

  16. Hood EE, Jen G, Kayes L, Kramer J, Fraley RT, Chilton M-D: Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/technology 2: 702–708 (1984).

    Article  Google Scholar 

  17. Huang Y, Morel P, Powell B, Kado CI: VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bact 172: 1142–1144 (1990).

    PubMed  Google Scholar 

  18. Janssen B-J, Gardner RC: Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72 (1989).

    Article  Google Scholar 

  19. Jefferson RA: Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  20. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  21. Jefferson RA, Wilson KJ: The GUS gene fusion system. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant Molecular Biology Manual, pp. B14/1-B14/33. Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  22. Jin S-G, Komari T, Gordon MP, Nester EW: Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bact 169: 4417–4425 (1987).

    PubMed  Google Scholar 

  23. Jin St-G, Roitsch T, Ankenbauer RG, Gordon MP, Nester EW: The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bact 172: 525–530 (1990).

    PubMed  Google Scholar 

  24. Kado CI: Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1–32 (1991).

    Google Scholar 

  25. Komari T: Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9: 303–306 (1990).

    Google Scholar 

  26. Kozak M: Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47: 1–45 (1983).

    PubMed  Google Scholar 

  27. Lichtenstein C, Draper J: Genetic engineering of plants. In: Glover DM (ed) DNA Cloning: A Practical Approach, vol. 2, pp. 67–119. IRL Press, Washington, DC (1986).

    Google Scholar 

  28. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  29. Messing J: New vectors for cloning. Meth Enzymol 101: 20–78 (1983).

    PubMed  Google Scholar 

  30. Montoya AL, Chilton M-D, Gordon MP, Sciaky D, Nester EW: Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: Role of plasmid genes. J Bact 129: 101–107 (1977).

    PubMed  Google Scholar 

  31. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  32. Raineri DM, Bottino P, Gordon MP, Nester EW: Agrobacterium-mediated transformation of rice (Oryzasativa L.) Bio/technology 8: 33–38 (1990).

    Article  Google Scholar 

  33. Ream W: Agrobacterium tumefaciens and interkingdom genetic exchange. Annu Rev Phytopath 27: 583–618 (1989).

    Article  Google Scholar 

  34. Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI: Regulation of vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bact 169: 5101–5112 (1987).

    PubMed  Google Scholar 

  35. Ronson CW, Nixon BT, Ausubel FM: Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579–581 (1987).

    PubMed  Google Scholar 

  36. Sciaky D, Montoya AL, Chilton MD: Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253 (1978).

    PubMed  Google Scholar 

  37. Shine J, Dalgarno L: The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementary to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346 (1974).

    PubMed  Google Scholar 

  38. Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M: Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250 (1990).

    Article  PubMed  Google Scholar 

  39. vanWordragen MF, deJong J, Huitema HBM, Dons HJM: Genetic transformation of Chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity. Plant Cell Rep 9: 505–508 (1991).

    Article  Google Scholar 

  40. Vieira J, Messing J: Production of single-stranded plasmid DNA. Meth Enzymol 153: 3–11 (1987).

    PubMed  Google Scholar 

  41. Visser RGF: Regeneration and transformation of potato by Agrobacterium tumefaciens. In: Lindsey K (ed) Plant Tissue Culture Manual: Fundamentals and Applications, pp. B5/1-B5/9. Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  42. Watson B, Currier TC, Gordon MP, Chilton M.-D, Nester EW: Plasmid required for virulence of Agrobacterium tumefaciens. J Bact 123: 255–264 (1975).

    PubMed  Google Scholar 

  43. Winans SC, Kerstetter RA, Nester EW: Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bact 170: 4047–4054 (1988).

    PubMed  Google Scholar 

  44. Zambryski P: Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet 22: 1–30 (1988).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Current address: Department of Agronomy, Purdue University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CN., Li, XQ. & Gelvin, S.B. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens . Plant Mol Biol 20, 1071–1087 (1992). https://doi.org/10.1007/BF00028894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028894

Key words

Navigation