Skip to main content
Log in

Optimising the tissue culture conditions for high efficiency transformation of indica rice

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Establishment of high efficiency Agrobacterium-mediated transformation techniques has greatly accelerated the widespread application of transformation in japonica rice. However, transformation in indica rice remains difficult. In this study, we identify two new media for subculture and differentiation, the two major steps in the tissue culture process for transformation. These media were tested using four cultivars representing very different germplasms of indica rice. The results show that the new media significantly improved the growth rate and quality of the calli, and also increased the differentiation rate for all four cultivars tested. Use of these modified media in transformation experiments also greatly improved the transformation efficiency of all four indica cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abediniz M, Herry RJ, Blakeney AB, Lewin L (1997) An efficient transformation system for the Australia rice cultivar Jarrah. Aust J Plant Physiol 24:133–141

    Google Scholar 

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    CAS  Google Scholar 

  • Balconi C, Perugini I, Castelletti S, Reali A, Russo S, Chan MT, Lupotto E (1998) Agrobacterium tumefaciens-mediated transformation of rice (Oryza sativa L ssp. Japonica) Italian cultiva.1. Interaction among Agrobacterium strains and rice genotypes in embryogenic callus of somatic and gametic origin. J Genet Breed 52:313–323

    Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c)) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772

    Article  CAS  PubMed  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Dong J, Teng WG, Hall TC (1996) Agrobacterium-mediated transformation of japonica rice. Mol Breed 2:267–276

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean roots cells. Exp Cell Res 50:150–158

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 6:387–405

    Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeng DH, Lee J, Kim CH, Jang S, Lee S, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Kim SI, An G (2000) T-DNA insertional mutagenesis genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  Google Scholar 

  • Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Khanna HK, Raina SK (1999) Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust J Plant Physiol 26:311–324

    CAS  Google Scholar 

  • Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Transgenic Res 11:411–423

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Ishida Y, Kumashiro T, Kubo T (1998) Advances in cereal gene transfer. Curr Opin Plant Biol 1:161–165

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Chen H, Cao YL, Wu CY, Wen J, Li YF, Hua HX (2002) Establishment of high-efficiency Agrobacterium-mediated genetic transformation system of Mudanjiang 8. Acta Agron Sin 28:294–300

    Google Scholar 

  • Liu KD, Wang J, Li HB, Xu CG, Zhang QF (1997) A genome-wide analysis of wide-compatibly in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet 95:809–814

    Article  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57

    CAS  PubMed  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130:1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Plant Physiol 15:473–493

    CAS  Google Scholar 

  • Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001) Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 13:2085–2098

    Article  CAS  PubMed  Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh D, Ramakrishnan NA, Ghosh M, Sen SK (1997) Transgenic elite indica rice plants expressing CryIAc-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc Natl Acad Sci USA 94:2111–2116

    Article  CAS  PubMed  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    CAS  PubMed  Google Scholar 

  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108:306–314

    Article  CAS  PubMed  Google Scholar 

  • Toriyama K, Hinata K (1985) Cell suspension and protoplast culture in rice. Plant Sci 46:179–183

    Article  Google Scholar 

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Ming XT, An CC, Yuan HY, Chen ZL (2002) Callus induction and regeneration from mature seeds of indica rice Minghui 63 and anti-fungal assay of transgenic rice plants. Sheng Wu Gong Cheng Xue Bao 18:323–326

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Li XJ, Yuan WY, Chen GX, Kilian A, Li J, Xu CG, Li XH, Zhou DX, Wang SP, Zhang QF (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu RJ, Elliott MC, Chen DF (1997) Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Mol Biotechnol 8:223–231

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Special Key Project on Rice Functional Genomics, and a grant from the National Program on Research and Development of Transgenic Plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifa Zhang.

Additional information

Communicated by H. Uchimiya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y.J., Zhang, Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23, 540–547 (2005). https://doi.org/10.1007/s00299-004-0843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0843-6

Keywords

Navigation