Skip to main content
Log in

Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399

    Article  PubMed  Google Scholar 

  • Appeldoorn NJG, de Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, van der Plas LHW (1997) Developmental changes of enzymes involved in the conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202:220–226

    Article  CAS  Google Scholar 

  • Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239

    Article  PubMed  CAS  Google Scholar 

  • Barber C, Rösti J, Rawat A, Findlay K, Roberts K, Seifert GJ (2006) Distinct properties of the five UDP-d-glucose/UDP-d-galactose 4-epimerase isoforms of Arabidopsis thaliana. J Biol Chem 281:17276–17285

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  PubMed  CAS  Google Scholar 

  • Burger Y, Schaffer AA (2007) The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis. J Amer Soc Hort Sci 132:704–712

    CAS  Google Scholar 

  • Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2009) Genetic diversity of Cucumis melo. Hort Rev 36:165–198

    Article  Google Scholar 

  • Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106

    Article  PubMed  CAS  Google Scholar 

  • Caspar T, Huber SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79:11–17

    Article  PubMed  CAS  Google Scholar 

  • Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics 27:272

    Article  Google Scholar 

  • Chrost B, Schmitz K (1997) Changes in soluble sugars and activity of α-galactosidases and acid invertase during muskmelon fruit development. J Plant Physiol 151:41–50

    CAS  Google Scholar 

  • Claeyssen E, Rivoal J (2007) Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709–731

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Petreikov M, Portnoy V, Katzir N, Pharr DM, Schaffer AA (2006) Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol 142:294–304

    Article  PubMed  CAS  Google Scholar 

  • Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belausov E, Granot D (2006) Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta 224:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  PubMed  CAS  Google Scholar 

  • Duncan KA, Hardin SC, Huber SC (2006) The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol 47:959–971

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Roessner U, Trethewey RN, Willmitzer L (2001) The contribution of plastidial PGM to the control of starch synthesis within the potato tuber. Planta 213:418–426

    Article  PubMed  CAS  Google Scholar 

  • Feusi MES, Burton JD, Williamson JD, Pharr DM (1999) Galactosyl-sucrose metabolism and UDP-galactose pyrophosphorylase from Cucumis melo L. fruit. Physiol Plant 106:9–16

    Article  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–988

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Petreikov M, Zamski E, Schaffer AA (1999) Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant 106:1–8

    Article  CAS  Google Scholar 

  • Gao Z, Petreikov M, Burger Y, Shen S, Schaffer AA (2004) Stachyose to sucrose metabolism in sweet melon (Cucumis melo) fruit mesocarp during the sucrose accumulation stage. In: Lebeda Paris (ed) Progress in cucurbit genetics and breeding research. Palacky University, Chech Republic, pp 471–476

    Google Scholar 

  • Glasziou KT, Gayler KR (1972) Storage of sugars in stalks of sugar cane. Bot Rev 38:471–488

    Article  Google Scholar 

  • Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in the establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Roitsch T (1999) The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant J 20:707–711

    Article  PubMed  CAS  Google Scholar 

  • Granot D (2008) Putting plant hexokinases in their proper place. Phytochemistry 69:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Gross KC, Pharr DM (1982) A potential pathway for galactose metabolism in Cucumis sativus L., a stachyose transporting species. Plant Physiol 69:117–121

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, Beebe DU, Turgeon R (1996) Phloem loading. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops: source-sink relationships. Marcel Dekker, NY, pp 209–227

    Google Scholar 

  • Hanson KR, McHale NA (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol 88:838–844

    Article  PubMed  CAS  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger Y, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Gen 121:511–533

    Google Scholar 

  • Harrison CJ, Hedley CL, Wang TL (1998) Evidence that the rug3 locus of pea encodes plastidial phosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts is glucose-6-phospkate. Plant J 13:753–762

    Article  CAS  Google Scholar 

  • Ho LC (1996) Tomato. In: Zamski E, Shaffer AA (eds) Photoassimilate distribution in plants and crops, source-sink relationships. Marcel Dekker, NY, pp 709–728

    Google Scholar 

  • Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447

    Article  PubMed  CAS  Google Scholar 

  • Hu GK, Madore SJ, Moldover B, Jatkoe T, Balaban D, Thomas J, Wang Y (2001) Predicting splice variant from DNA chip expression data. Genome Res 11:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Hubbard NL, Pharr DM, Huber SC (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Nakagawa H, Ogura N, Hirabayashi T, Sato T (1992) Acid invertase of melon fruits: immunochemical detection of acid invertases. Plant Cell Physiol 33:1127–1133

    CAS  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Ni DA, Ruan Y (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  PubMed  CAS  Google Scholar 

  • Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta 224:1341–1352

    Article  PubMed  CAS  Google Scholar 

  • Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411–425

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kubota S (1978) Properties of invertase in sugar storage of citrus fruit and changes in their actinities during maturation. Physiol Plantarum 42:67–72

    Article  CAS  Google Scholar 

  • Keller F, Pharr DM (1996) Metabolism of carbohydrates in sink and sources: galactosyl-sucrose oligosaccharide. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, NY, pp 157–183

    Google Scholar 

  • Komatsu A, Takanokura Y, Omura M, Akihama T (1996) Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.). Mol Gen Genet 252:346–351

    PubMed  CAS  Google Scholar 

  • Komatsu A, Takanokura Y, Moriguchi T, Omura M, Akihama T (1999) Differential expressión of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.). Plant Sci 140:169–178

    Article  CAS  Google Scholar 

  • Komatsu A, Takanokura Y, Moriguchi T, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    Article  PubMed  CAS  Google Scholar 

  • Kortstee AJ, Appeldoorn NJG, Oortwijn MEP, Visser RGF (2007) Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226:929–939

    Article  PubMed  CAS  Google Scholar 

  • Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  PubMed  CAS  Google Scholar 

  • Langenkämper G, Fung RW, Newcomb RD, Atkinson RG, Gardner RC, MacRae EA (2002) Sucrose phosphate synthase genes in plants belong to three different families. J Mol Evol 54:322–332

    PubMed  Google Scholar 

  • Lester GE, Arias LS, Gomez-Lim M (2001) Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J Am Soc Hort Sci 126:33–36

    CAS  Google Scholar 

  • Lutfiyya LL, Xu N, D’Ordine RL, Morrell JA, Miller PW, Duff SM (2007) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J Plant Physiol 164:923–933

    Article  PubMed  CAS  Google Scholar 

  • McCollum TG, Huber DJ, Cantliffe DJ (1988) Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development. J Am Soc Hort Sci 113:399–403

    CAS  Google Scholar 

  • Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

  • Mitchell DE, Gadus MV, Madore MA (1992) Patterns of assimilate production and translocation in maskmelon (Cucumis melo L.). I. Diurnal patterns. Plant Physiol 99:959–965

    Article  PubMed  CAS  Google Scholar 

  • Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Nonis A, Ruperti B, Pierasco A, Canaguier A, Adam-Blondon AF, Di Gaspero G, Vizzotto G (2008) Neutral invertases in grapevine and comparative analysis with Arabidopsis, poplar and rice. Planta 229:129–142

    Article  PubMed  CAS  Google Scholar 

  • Núñez JG, Kronenberger J, Wuillème S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localization in seeds reveals a strong association with plastids. Plant Cell Physiol 49:1621–1626

    Article  PubMed  Google Scholar 

  • Nuñez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe DJ (2008) Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28:13–55

    Article  PubMed  Google Scholar 

  • Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  PubMed  CAS  Google Scholar 

  • Petreikov M, Dai N, Granot D, Schaffer AA (2001) Characterization of native and yeast-expressed tomato fruit fructokinase enzymes. Phytochemistry 58:841–847

    Article  PubMed  CAS  Google Scholar 

  • Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA (2006) Temporally extended gene expression of the ADPglucose pyrophosphorylase large subunit (AGPase-LS1) leads to increased enzyme activity in developing tomato fruit. Planta 224:1465–1479

    Article  PubMed  CAS  Google Scholar 

  • Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification on cultivars of melon. Acta Hort 510:29–36

    Google Scholar 

  • Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G, Rotem Harel-Beja, Forer R, Portnoy VH, Lewinsohn E, Tadmor Y, Burger J, Schaffer AA, Katzir N (2011) Use of non-normalized, non-amplified cDNA for 454-based RNA-Seq of fleshy melon fruit. The Plant Genome. doi: 10.3835/plantgenome2010.11.0026

  • Pressey R (1966) Separation and properties of potato invertase and invertase inhibitor. Arch Biochem Biophys 113:667–674

    Article  PubMed  CAS  Google Scholar 

  • Ranwala AP, Iwanami SS, Masuda H (1991) Acid and neutral invertases in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit. Plant Physiol 96:881–886

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Greiner S (2004) Plant protein inhibitors of invertases. Biochim Biophys Acta 1696:253–261

    PubMed  CAS  Google Scholar 

  • Ricardo CPP, ap Rees T (1970) Invertase activity during the development of carrot roots. Phytochemistry 9:239–247

    Article  CAS  Google Scholar 

  • Rosa JT (1928) Changes in composition during ripening and storage of melons. Hilgardia 3:421–443

    CAS  Google Scholar 

  • Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis. Plant Cell 19:1565–1579

    Article  PubMed  Google Scholar 

  • Ruan Y-L, Patrick JW (1995) The cellular pathway of post-phloem sugar transport in developing tomato fruit. Planta 196:434–444

    Article  CAS  Google Scholar 

  • Schaffer AA, Petreikov M (1997) Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746

    PubMed  CAS  Google Scholar 

  • Schaffer AA, Aloni B, Fogelman E (1987) Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 26:1883–1887

    Article  CAS  Google Scholar 

  • Schaffer AA, Pharr DM, Madore MA (1996) Cucurbits. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, NY, pp 729–757

    Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Schaffer AA, Perl-Ttreves R (1999) Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Res Crop Evol 45:53–62

    Article  Google Scholar 

  • Subbaiah CC, Palaniappan A, Duncan K, Rhoads DM, Huber SC, Sachs MM (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J Biol Chem 281:15625–15635

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:411–423

    Article  Google Scholar 

  • Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 227:795–807

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Sanz A, Brenner ML, Smith A (1993) Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol 101:321–327

    PubMed  CAS  Google Scholar 

  • Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Zhu WY, Wasserman A, Grebinskiy V, Olson A, Mintz L (2002) Computational analysis of alternative splicing using EST tissue information. Genomics 80:326–330

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Hughes DL, Yabumoto K, Jennings WC (1977) Quality of cantaloupes: variability and attributes. Scientia Hort 6:59–70

    Article  CAS  Google Scholar 

  • Yu TS, Lue WL, Wang SM, Chen J (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123:319–326

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C (2008) Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. J Exp Bot 59:2969–2977

    Article  PubMed  CAS  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of lin5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from of the Chief Scientist, Ministry of Agriculture; The Israel Bio-Tov Consortium and Magnet program, Israeli Ministry of Industry, Trade and Labor; Binational Agriculture Research and Development (BARD) Grant IS-2270-94 and IS-3877-06; Israel Science Foundation Grant No. 386/06; and EU project Food-2005 MetaPhor. This paper is journal series #172-10 of the Agricultural Research Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur A. Schaffer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, N., Cohen, S., Portnoy, V. et al. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76, 1–18 (2011). https://doi.org/10.1007/s11103-011-9757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9757-1

Keywords

Navigation