Skip to main content

Brachypodium distachyon, a New Model for the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

Brachypodium distachyon (Brachypodium) is a small annual grass with biological, physical and genomic attributes (e.g. rapid cycling, small stature, inbreeding, small genome, diploid accessions) suitable for use as a modern model system. In pursuit of this goal, researchers have made rapid progress in developing genomic resources that will transform Brachypodium into a powerful model system including: facile Agrobacterium-mediated transformation methods, BAC libraries, physical maps, genetic maps, and germplasm resources. In addition, a preliminary 4x draft of the entire genome has been released, and completion of the final 8x assembly is anticipated in 2009. This chapter provides an overview of the advantages of Brachypodium as a model system and surveys the use and potential applications of this system to aid wheat, barley and Lolium research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M., Kelley, J., Dubnick, M., Polymeropoulos, M., Xiao, H., Merril, C., Wu, A., Olde, B., Moreno, R., Kerlavage, a., McCombie, W. and Venter, J. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  • Bablak, P., Draper, J., Davey, M.R. and Lynch, P.T. (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell, Tiss. Org. Cult. 42, 97–107.

    Article  Google Scholar 

  • Bennett, M.D. and Leitch, I.J. (2005) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann. Botany 95, 45–90.

    Article  CAS  Google Scholar 

  • Bossolini, E., Wicker, T., Knobel, P.A. and Keller, B. (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 49, 704–717.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, D.G., McCallum, N., Shaw, P., Muehlbauer, G.J., Marshall, D.F. and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 40, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Carpita, N.C. (1996) Structure and biogenesis of the cell walls of grasses. Ann. Rev. Plant Phys. Plant Mol. Biol. 47, 445–476.

    Article  CAS  Google Scholar 

  • Catalán, P. and Olmstead, R.G. (2000) Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. Plant Syst. Evol. 220, 1–19.

    Google Scholar 

  • Catalán, P., Ying, S., Armstrong, L., Draper, J. and Stace, C.A. (1995) Molecular phylogeny of the grass genus Brachypodium P.Beuav. based on RFLP and RAPD analysis. Botanical J. Linn. Soc. 117, 263–280.

    Google Scholar 

  • Christiansen, P., Didion, T., Andersen, C.H., Folling, M. and Nielsen, K.K. (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep. 23, 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P., Ford, T.L. and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio. Technol. 9, 957–962.

    Google Scholar 

  • Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J-L., Hückelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R.N. and Fauquet, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 7, 25–33.

    Article  CAS  Google Scholar 

  • DOE. (Ed.). (2006). Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda, U.S. Department of Energy, Office of Science and Office of Energy Efficiency.

    Google Scholar 

  • Döring, E., Schneider, J., Hilu, K.W. and Röser, M. (2007) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bull. 62, 407–424.

    Google Scholar 

  • Draper, J., Mur, L.A.J., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R. and Routledge, A.P.M. (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Phys. 127, 1539–1555.

    Article  CAS  Google Scholar 

  • Edwards, M., Cooper, J., Massalski, P. and Green, B. (1985) Some properties of a virus-like agent found in Brachypodium sylvaticum in the United Kingdom. Plant Pathol. 34, 95–104.

    Article  Google Scholar 

  • Feldmann, K.A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.

    Article  CAS  Google Scholar 

  • Foote, T.N., Griffiths, S., Allouis, S. and Moore, G. (2004) Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct. Integ. Genomics 4, 26–33.

    Article  CAS  Google Scholar 

  • Fu, X., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P. and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Garvin, D.F. (2007) Brachypodium: a new monocot model plant system emerges. J. Sci. Food Agric. 87, 1177–1179.

    Article  CAS  Google Scholar 

  • Gaut, B.S. (2002) Evolutionary dynamics of grass genomes. New Phytol. 154, 15–28.

    Article  CAS  Google Scholar 

  • Greene, E.A., Codomo, C.A., Taylor, N.E., Henikoff, J.G., Till, B.J., Reynolds, S.H., Enns, L.C., Burtner, C., Johnson, J.E., Odden, A.R., Comai, L. and Henikoff, S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740.

    PubMed  CAS  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I. and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    Article  PubMed  CAS  Google Scholar 

  • Hasterok, R., Draper, J. and Jenkins, G. (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) beauv. Chromosome Res. 12, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Hasterok, R., Dulawa, J., Jenkins, G., Leggett, M. and Langdon, T. (2006a) Multi-substrate chromosome preparations for high throughput comparative FISH. BMC Biotechnol. 6, 20.

    Google Scholar 

  • Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J. and Jenkins, G. (2006b) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173, 349–362.

    Google Scholar 

  • Hsaio, C., Chatterton, N.J., Asay, K.H. and Jensen, K.B. (1994) Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37, 112–120.

    Article  Google Scholar 

  • Huo, N., Gu, Y., Lazo, G., Vogel, J., Coleman-Derr, D., Luo, M., Thilmony, R., Garvin, D. and Anderson, O. (2006) Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome 49, 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  • Huo, N., Lazo, G.R., Vogel, J.P., You, F.M., Ma, Y., Hayden, D.M., Coleman-Derr, D., Hill, T.A., Dvorak, J., Anderson, O.D., Luo, M. and Gu, Y.Q. (2007) The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct. Integ. Genomics 8, 135–147.

    Google Scholar 

  • Jeon, J., Lee, S., Jung, K., Jun, S., Jeong, D., Lee, J., Kim, C., Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M., Sung, R., Choi, H., Yu, J., Choi, J., Cho, S., Cha, S., Kim, S. and An, G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, E.A. (1998) Relationships of cereal crops and other grasses. Proc. Natl. Acad. Sci. USA 95, 2005–2010.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, E.A. (2001) Evolutionary history of the grasses. Plant Phys. 125, 1198–1205.

    Article  CAS  Google Scholar 

  • Khan, M.A. and Stace, C.A. (1999) Breeding relationships in the genus Brachypodium (Poaceae: Pooideae). Nordic J. Bot. 19, 257–269.

    Article  Google Scholar 

  • Kohli, A., Twyman, R.M., Abranches, R., Wegel, E., Stoger, E. and Christou, P. (2003) Transgene integration, organization and interaction in plants. Plant Mol. Biol. 52, 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P. and Gatehouse, J.A. (2002) Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Mol. Breed. 9, 231–244.

    Article  CAS  Google Scholar 

  • Mur, L.A.J., Xu, R., Casson, S.A., Stoddart, W.M., Routledge, A.P.M. and Draper, J. (2004) Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Mol. Plant Pathol. 5, 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E. and Werr, W. (2007) WOX gene phylogeny in poaceae: a comparative approach addressing leaf and embryo development. Mol. Biol. Evol. 24, 2474–2484.

    Google Scholar 

  • Olsen, P., Lenk, I., Jensen, C.S., Petersen, K., Andersen, C.H., Didion, T. and Nielsen, K.K. (2006) Analysis of two heterologous flowering genes in Brachypodium distachyon demonstrates its potential as a grass model plant. Plant Sci. 170, 1020–1025.

    Article  CAS  Google Scholar 

  • Păcurar, D.I., Thordal-Christensen, H., Nielsen, K.K. and Lenk, I. (2008) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res. 17, 965–975.

    Google Scholar 

  • Robertson, I.H. (1981) Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica 56, 55–60.

    Article  Google Scholar 

  • Rokas, A., Williams, B.I., King, N. and Carroll, S.B. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425, 798–804.

    Article  PubMed  CAS  Google Scholar 

  • Routledge, A.P.M., Shelley, G., Smith, J.V., Draper, J., Mur, L.A.J. and Talbot, N.J. (2004) Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol. Plant Pathol. 5, 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Draper, J. and Stace, C. (1993) Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae). Plant Syst. Evol. 188, 125–138.

    Google Scholar 

  • Spielmeyer, W., Singh, R.P., McFadden, H., Wellings, C.R., Huerta-Espino, J., Kong, X., Appels, R. and Lagudah, E.S. (2007) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor. App. Genet. 116, 481–490.

    Google Scholar 

  • Svitashev, S.K. and Somers, D.A. (2002) Characterization of transgene loci in plants using FISH: a picture is worth a thousand words. Plant Cell Tiss. Org. Cult. 69, 205–214.

    Article  CAS  Google Scholar 

  • Travella, S., Ross, S.M., Harden, J., Everett, C., Snape, J.W. and Harwood, W.A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23, 780–789.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A., Beales, J., Faure, S., Dunford, R.P. and Laurie, D.A. (2005) Botany: the pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, A.K. and Mohanty, A. (2000) Rice transformation for crop improvement and functional genomics. Plant Sci. 158, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Vain, P., Worland, B., Thole, V., McKenzie, N., Alves, S., Opanowicz, M., Fish, L., Bevan, M. and Snape, J. (2008) Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6, 236–245.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J.P., Garvin, D.F., Leong, O.M. and Hayden, D.M. (2006a) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss. Org. Cult. 85, 199–211.

    Google Scholar 

  • Vogel, J.P., Gu, Y., Twigg, P., Lazo, G., Laudencia-Chingcuanco, D., Hayden, D., Donze, T., Vivian, L., Stamova, B. and Coleman-Derr, D. (2006b) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113, 186–195.

    Google Scholar 

  • Vogel, J. and Hill, T. (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27, 471–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA CRIS project 5325-21000-013-00 “Biotechnological Enhancement of Energy Crops” and by the Office of Science (BER), U.S. Department of Energy, Interagency Agreement No. DE-AI02-07ER64452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vogel, J., Bragg, J. (2009). Brachypodium distachyon, a New Model for the Triticeae. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_16

Download citation

Publish with us

Policies and ethics