Skip to main content
Log in

Retrotransposon populations of Vicia species with varying genome size

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The (non-LTR) LINE and Ty3-gypsy-type LTR retrotransposon populations of three Vicia species that differ in genome size (Vicia faba, Vicia melanops and Vicia sativa) have been characterised. In each species the LINE retrotransposons comprise a complex, very heterogeneous set of sequences, while the Ty3-gypsy elements are much more homogeneous. Copy numbers of all three retrotransposon groups (Ty1-copia, Ty3-gypsy and LINE) in these species have been estimated by random genomic sequencing and Southern hybridisation analysis. The Ty3-gypsy elements are extremely numerous in all species, accounting for 18–35% of their genomes. The Ty1-copia group elements are somewhat less abundant and LINE elements are present in still lower amounts. Collectively, 20–45% of the genomes of these three Vicia species are comprised of retrotransposons. These data show that the three retrotransposon groups have proliferated to different extents in members of the Vicia genus and high proliferation has been associated with homogenisation of the retrotransposon population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci USA 95:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Chavanne F, Zhang DX, Liaud MF, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Smith DB, Kumar A (1992a) Extreme heterogeneity of Ty-copia group retrotransposons in plants. Mol Gen Genet 231:233–242

    CAS  PubMed  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992b). Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    CAS  PubMed  Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, et al (2000) The DNA sequence of human chromosome 21. Nature 405:311–319

    Article  CAS  PubMed  Google Scholar 

  • Hill P (2003) Retrotransposons as determinants of genome size in three Vicia species. PhD Thesis, University of Dundee

  • Hirochika H, Hirochika R (1993) Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68:35–46

    CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immolen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimate divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Iida Y, Yakura K, Tanifuji S (1985) Sequence analysis of Vicia faba highly repeated DNA: the BamHI repeated sequence families. Plant Mol Biol 5:41–53

    Article  CAS  Google Scholar 

  • Konieczny A, Voytas DF, Cummings MP, Ausubel FM (1991) A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127:801–809

    CAS  PubMed  Google Scholar 

  • Kubis S, Heslop-Harrison JS, Desel C, Schmidt T (1998) The genomic organisation of non-LTR retrotransposons from three Beta species and five other Angiosperms. Plant Mol Biol 33:11–21

    Google Scholar 

  • Kumar A. Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Ohtsubo E, Ohtsubo H (1999) Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet Syst 74:299–307

    Article  CAS  PubMed  Google Scholar 

  • Laten HM, Majumdar A, Gaucher EA (1998) SIRE-1, a copia/Ty1-like retroelement form soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95:6897–6902

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Ellis THN, Turner L, Hellen RP, Cleary WG (1990) A Copia-like element in Pisum demonstrates the use of dispersed repeat sequences in genetic analysis. Plant Mol Biol 15:707–722

    Article  CAS  PubMed  Google Scholar 

  • Manninen I, Schulman AH (1993) BARE-1 a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846

    Article  CAS  PubMed  Google Scholar 

  • Marracci S, Batistoni R, Pesole G, Citt L, Nardi I (1996) gypsy/Ty3-like elements in the genome of the terrestrial salamander Hydromantes (Amphibia, Urodela). J Mol Evol 43:584–593

    CAS  PubMed  Google Scholar 

  • Martin DMA., Hill P, Barton GJ, Flavell A.J (2003) Visual representation of database search results: the RHIMS plot. Bioinformatics 19:1–2

    Article  Google Scholar 

  • McCarthy EM, Liu J, Lizhi G, McDonald JF (2002) Long terminal repeat retrotransposons of Oryza sativa. Genome Biol Res 3:0053.1–0053.11

    Google Scholar 

  • Neuman P, Pozarkova D, Macas J (2003) Highly abundant pea retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53:399–410

    Article  PubMed  Google Scholar 

  • Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261:71–79

    Article  CAS  PubMed  Google Scholar 

  • Nouzova M, Neuman P, Navratilova A, Galbraith DW, Macas J (2000) Microarray-based survey of repetitive genomic sequences in Vicia spp. Plant Mol Biol 45:229–244

    Article  Google Scholar 

  • Ohtsubo H, Kumekawa N, Ohtsubo E (1999) Rire2, a novel gypsy-type retrotransposon from rice. Genes Genet Syst 74:83–91

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250:305–315

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakijama Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Sant VJ, Sainani MN, Sami-Subbu R, Ranjekar PK, Gupt VS (2000) Ty1-copia retrotransposon-like elements in chickpea genome: their identification, distribution and use for diversity analysis. Gene 257:157–166

    Article  CAS  PubMed  Google Scholar 

  • Smit FA (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 657–663

  • Suoniemi A, Tanskanen J, Schulman AH. (1998) Gypsy retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Vanderwiel PL, Voytas D, Wendel JF (1993) Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36:429–447

    CAS  PubMed  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharov A, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Voytas DF (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149:703–715

    CAS  PubMed  Google Scholar 

  • Wright DA, Ke N, Smalle J, Hauge BM, Goodman HM, Voytas DF (1996) Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142:569–578

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PH was funded by a BBSRC Earmark Studentship. This work was supported in part by Grants 960508 (TEBIODIV), 31502 (TEGERM) and FP6-2002-FOOD-1-506223 (GRAIN LEGUMES) from the European Commission under the Frameworks IV, V and VI. We thank Jeff Bennetzen for providing Ty3-gypsy group retrotransposon sequences prior to database submission, Steve Pearce for much helpful advice with the work, Gavin Ramsay for interesting discussions on Vicia phylogeny and for Vicia seeds, and Noel Ellis, Alan Schulman, Amar Kumar, Robbie Waugh and David Marshall for many interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Flavell.

Additional information

Communicated by M.-A. Grandbastien

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, P., Burford, D., Martin, D.M. et al. Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics 273, 371–381 (2005). https://doi.org/10.1007/s00438-005-1141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1141-x

Key words

Navigation