Skip to main content
Log in

Genome-wide identification and expression analysis of rice cell cycle genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cyclins, cyclin-dependent kinases, and a number of other proteins control the progression of plant cell cycle. Although extensive studies have revealed the roles of some cell cycle regulators and the underlying mechanisms in Arabidopsis, relatively a small number of cell cycle regulators were functionally analyzed in rice. In this study, we describe 41 regulators in the rice genome. Our results indicate that the rice genome contains a less number of the core cell cycle regulators than the Arabidopsis one does, although the rice genome is much larger than the Arabidopsis one. Eight groups of CDKs similar to those in Arabidopsis were identified in the rice genome through phylogenetic analysis, and the corresponding members in the different groups include E2F, CKI, Rb, CKS and Wee. The structures of the core cell regulators were relatively conserved between the rice and Arabidopsis genomes. Furthermore, the expression of the majority of the core cell cycle genes was spatially regulated, and the most closely related ones showed very similar patterns of expression, suggesting functional redundancy and conservation between the highly similar core cell cycle genes in rice and Arabidopsis. Following auxin or cytokinin treatment, the expression of the core cell cycle genes was either upregulated or downregulated, suggesting that auxin and/or cytokinin may directly regulate the expression of the core cell cycle genes. Our results provide basic information to understand the mechanism of cell cycle regulation and the functions of the rice cell cycle genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahams S, Cavet G, Oakenfull EA, Carmichael JP, Shah ZH, Soni R, Murray JA (2001) A novel and highly divergent Arabidopsis cyclin isolated by complementation in budding yeast. Biochim Biophys Acta 1539:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    PubMed  CAS  Google Scholar 

  • Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21:3081–3095

    Article  PubMed  CAS  Google Scholar 

  • Barrôco RM, Peres A, Droual AM, De Veylder L, Nguyen le SL, De Wolf J, Mironov V, Peerbolte R, Beemster GT, Inzé D, Broekaert WF, Frankard V (2006) The cyclin-dependent kinase inhibitor Orysa;KRP1 plays an important role in seed development of rice. Plant Physiol 142:1053–1064

    Article  PubMed  Google Scholar 

  • Beemster GTS, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 138:734–743

    Article  PubMed  CAS  Google Scholar 

  • Binns AN (1994) Cytokinin accumulation and action: biochemical, genetic, and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 45:173–196

    Article  CAS  Google Scholar 

  • Castellano MM, del Pozo JC, Ramirez-Parra E, Brown S, Gutierrez C (2001) Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13:2671–2686

    Article  PubMed  CAS  Google Scholar 

  • Combettes B, Reichheld JP, Chaboute ME, Philipps G, Wen HS, Chaubet-Gigot N (1999) Study of phase-specific gene expression in synchronized tobacco cells. Methods Cell Sci 21:109–121

    Article  PubMed  CAS  Google Scholar 

  • De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    Article  PubMed  CAS  Google Scholar 

  • De Jager SM, Menges M, Bauer UM, Murray JA (2001) Arabidopsis E2F1 binds a sequence present in the promotor of S-phase-regulated gene AtCDC6 and is a member of a multigene family with differential activities. Plant Mol Biol 47:555–568

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1667

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Joubès J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  CAS  Google Scholar 

  • Fabian T, Lorbiecke R, Umeda M, Sauter M (2000) The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta 211: 376–383

    Article  PubMed  CAS  Google Scholar 

  • Fobert PR, Gaudin V, Lunness P, Coen ES, Doonan JH (1996) Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8:1465–1476

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Schmülling T (1999) Cytokinin cycles cells. Trends Plant Sci 4:243–244

    Article  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2 + protein kinase regulates entry into mitosis. Nature 342:39–45

    Article  PubMed  CAS  Google Scholar 

  • Grafi G, Burnett RJ, Helentjaris T, Larkins BA, DeCaprio JA, Sellers WR, Kaelin WG Jr (1996) A maize cDNA encoding a member of the retinoblastoma protein family: Involvement in endoreduplication. Proc Natl Acad Sci U S A 93:8962–8967

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C, Ramirez-Parra E., Castellano MM, del Pozo JC (2002) G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Imajuku Y, Anai T, Matsui M, Oka A (1991) Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene 105:159–165

    Article  PubMed  CAS  Google Scholar 

  • Hsieh WL, Wolniak SM (1998) Isolation and characterization of a funcational A-type cyclin from maize. Plant Mol Biol 37:121–129

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Mechanism of cdk activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–320

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Gu Y, Morgan DO (1996) Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134:963–970

    Article  PubMed  CAS  Google Scholar 

  • Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP (2000) CDK-related protein kinases in plants. Plant Mol Biol 43:607–620

    Google Scholar 

  • King RW, Jackson PK, Kirschner MW (1994) Mitosis in transition. Cell 79:563–571

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2002) E2F sites that can interact with E2F proteins cloned from rice are required for meristematic tissue-specific expression of rice and tobacco proliferating cell nuclear antigen promoters. Plant J 29:45–59

    Article  PubMed  CAS  Google Scholar 

  • La H, Li J, Ji Z, Cheng Y, Li X, Jiang S, Venkatesh PN, Ramachandran S (2006) Genome-wide analysis of cyclin family in rice (Oryza Sativa L.). Mol Genet Genomics 275:374–386

    Article  CAS  Google Scholar 

  • Lees E (1995) Cyclin dependent kinase regulation. Curr Opin Cell Biol 7:773–780

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Auh C-K, Kim D, Lee T-K, Lee S (2006) Exogenous cytokinin treatment maintains cyclin homeostasis in rice seedlings that show changes of cyclin expression when the photoperiod is rapidly changed. Plant Physiol Biochem 44:248–252

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53:377–398

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Xu ZH, Luo D, Xue HW (2003) Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J 36:189–202

    Article  PubMed  CAS  Google Scholar 

  • Lui H, Wang H, Delong C, Fowke LC, Crosby WL, Fobert PR (2000) The Arabidopsis Cdc2a-interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin-dependent kinase activity in vitro. Plant J 21:379–385

    Article  PubMed  CAS  Google Scholar 

  • Magyar Z, Atanassova A, De Veylder L, Rombauts S, Inzé D (2000) Characterization of two distinct DP-related genes from Arabidopsis thaliana. FEBS Lett 486:79–87

    Article  PubMed  CAS  Google Scholar 

  • Magyar Z, Meszaros T, Miskolczi P, Deak M, Feher A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bilgin M, Bako L, Koncz C, Dudits D (1997) Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9:223–235

    Article  PubMed  CAS  Google Scholar 

  • Meijer M, Murray JAH (2001) Cell cycle controls and the development of plant form. Curr Opin Plant Biol 4:44–49

    Article  PubMed  CAS  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JA (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41:546–566

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JA (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JA (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53:423–442

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, De Veylder L, Van Montagu M, Inzé D (1999) Cyclin-dependent kinases and cell division in higher plants—the nexus. Plant Cell 11:509–521

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Van Montagu M, Inzé D (1997) Regulation of cell division in plants: an Arabidopsis perspective. Prog Cell Cycle Res 3:29–41

    PubMed  CAS  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Mok DWS, Mok MC (1994) Cytokinins: chemistry, activity and function. CRC Press, Boca Raton, FL

    Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  PubMed  CAS  Google Scholar 

  • Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI (2003) Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 423:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto J, Hirabayashi T, Hayano Y, Hata S, Ohashi Y, Suzuka I, Utsugi T, Toh-e A, Kikuchi Y (1992) Isolation and characterization of cDNA clones encoding cdc2 homologues from Oryza sativa: a functional homologue and cognate variants. Mol Gen Genet 233:10–16

    Google Scholar 

  • Pines J (1995) Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J 308:697–711

    PubMed  CAS  Google Scholar 

  • Potuschak T, Doerner P (2001) Cell cycle controls: genome-wide analysis in Arabidopsis. Curr Opin Plant Biol 4:501–506

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2005) Jasmonates—signals in plant–microbe interactions. J Plant Growth Regul 23:211–222

    Article  Google Scholar 

  • Ramirez-Parra E, Lopez-Matas MA, Frundt C, Gutierrez C (2004) Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16:2350–2363

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Carson SDB, To JPC, Kieber JJ (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132:1998–2011

    Article  PubMed  CAS  Google Scholar 

  • Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inzé D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JA (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol Biol 32:1003–1018

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    Article  PubMed  CAS  Google Scholar 

  • Roudier F, Fedorova E, Lebris M, Lecomte P, Gyorgyey J, Vaubert D, Horvath G, Abad P, Kondorosi A, Kondorosi E (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol 131:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Sabelli PA, Larkins BA (2006) Grasses like mammals? Redundancy and compensatory regulation within the retinoblastoma protein family. Cell Cycle 5:352–355

    PubMed  CAS  Google Scholar 

  • Sabelli PA, Dante RA, Leiva-Neto JT, Jung R, Gordon-Kamm WJ, Larkins BA (2005) RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc Natl Acad Sci U S A 102:13005–13012

    Article  PubMed  CAS  Google Scholar 

  • Shimotohno A, Matsubayashi S, Yamaguchi M, Uchimiya H, Umeda M (2003) Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. FEBS Lett 534:69–74

    Article  PubMed  CAS  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    Article  PubMed  CAS  Google Scholar 

  • Stals H, Inzé D (2001) When plant cells decide to divide. Trends Plant Sci 6:359–364

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci U S A 96:4180–4185

    Article  PubMed  CAS  Google Scholar 

  • Torres Acosta JA, De Almeida Engler J, Raes J, Magyar Z, De Groodt R, Inzé D, De Veylder L (2004) Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins. Cell Mol Life Sci 61:1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Umeda M, Bhalerao RP, Schell J, Uchimiya H, Koncz C (1998) A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:5021–5026

    Article  PubMed  CAS  Google Scholar 

  • Umeda M, Umeda-Hara C, Yamaguchi M, Hashimoto J, Uchimiya H (1999) Differential expression of genes for cyclin-dependent protein kinases in rice plants. Plant Physiol 119:31–40

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903–916

    Article  PubMed  CAS  Google Scholar 

  • Verkest A., Manes CL, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inzé D, De Veylder L (2005) The Cyclin-Dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17:1723–1736

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Huo SN, Guo J, Zhang XS (2006) Wheat D-Type cyclin Triae;CYCD2;1 regulate development of transgenic Arabidopsis plants. Planta 224:1129–1140

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, dePamphilis CW, Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Fowke LC, Crosby WL (1997) A plant cyclin-dependent kinase inhibitor gene. Nature 386:451–452

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J 24:613–623

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Umeda M, Uchimiya H (1998) A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. Plant J 16:613–619

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Fabian T, Sauter M, Bhalerao RP, Schrader J, Sandberg G, Umeda M, Uchimiya H (2000) Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant J 24:11–20

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Letham DS, John PCL (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200:2–12

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Fowke LC, Wang H (2002) Plant CDK inhibitors: studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant Cell Rep 20:967–975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Major State Basic Research Program of the People’s Republic of China (2005CB120803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Sheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material

Fig. S1

Expression profiles of the rice core cell cycle genes in seedlings after auxin treatment. The transcript levels of these genes were analyzed over a 24-h period after 10 μM IAA treatment. The rice actin gene was used as an internal control. (A) Cyclins; (B) CDKs and CKS; (C) KRPs; (D) E2F/DPs; (E) Rbs. ↑, upregulation; ↓, downregulation (JPG 615 kb)

Fig. S2

Expression profiles of the rice core cell cycle genes in seedlings after cytokinin treatment. The transcript levels of these genes were analyzed over 4-h period in response to 5 μM exogenous 6-BA. The rice actin gene was used as an internal control. (A) Cyclins; (B) CDKs and CKS; (C) KRP; (D) E2F/DPs; (E) Rbs. ↑, upregulation; ↓, downregulation (JPG 724 kb)

Table S1

A list of rice core cell cycle genes (DOC 227 kb)

Table S2

Sequences of rice core cell cycle genes (XLS 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Song, J., Wang, F. et al. Genome-wide identification and expression analysis of rice cell cycle genes. Plant Mol Biol 64, 349–360 (2007). https://doi.org/10.1007/s11103-007-9154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9154-y

Keywords

Navigation