Skip to main content
Log in

Phenylphenalenone phytoalexins, will they be a new type of fungicide?

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 17 August 2011

Abstract

Phenylphenalenones represent a kind of phytoalexins produced in leaves and rhyzomes of banana and plantains (Musaceae), as well as in species of other families. These compounds are synthesized in plants by induction with aminoglycosides, or in the first stages of attack by the pathogenic fungus Mycosphaerella fijensis, a causal agent of the disease known as Black Sigatoka, which reduces banana production. In this paper we report the biosynthesis, synthesis and antifungal activities of these kinds of compounds and discus the possibility to use phytoalexins inductors as plant protectants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albersheim P, Valent BS (1978) Host-pathogen interactions in plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J Cell Biol 78:627–643

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P, Darvill A, Cheong JJ, Eberhard S, Hahn MG, Marfa V, Mohnen D, O’Neill Malcolm MA (1992) Oligosaccharins: oligosaccharide regulatory molecules. Acc Chem Res 25:77–83

    Article  CAS  Google Scholar 

  • Bailey J, Mansfield J (1982) The phytoalexins. Blackie, Glasgow

    Google Scholar 

  • Basavaraju P, Shetty NP, Shetty HS, de Neergaard E, Jørgensen HJ (2009) Infection biology and defense responses in sorghum against Colletotrichum sublineolum. J Appl Microbiol 107:404–415

    Article  PubMed  CAS  Google Scholar 

  • Bazan AC, Edwards JM (1976) Phenalenone pigments of the flowers of Lachnanthes tinctoria. Phytochemistry 15:1413–1415

    Article  CAS  Google Scholar 

  • Beecher CW, Sarg TM, Edwards JM (1983) Occurrence and biosynthesis of 9-phenylphenalenones in callus tissue of Lachnanthes tinctoria. J Nat Prod 46:932–933

    Article  CAS  Google Scholar 

  • Binks RH, Greenham JR, Luis J-G, Gowen SR (1997) A phytoalexin from roots of Musa acuminata var. Pisang Sipulu Phytochem 45:47–49

    CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 44:1879–1900

    Article  Google Scholar 

  • Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell AL (2008) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617

    Article  PubMed  CAS  Google Scholar 

  • Chica R, Herrera M, Jiménez I, Lizcano S, Montoya JA, Patiño LF, Rodríguez PA, Ruiz LH (2004) Impacto y manejo de la sigatoka negra en el cultivo de banano de exportación en Colombia. In: Paper presented at the XVI Acorbat Meeting, Oaxaca, 26 Sep–01 Oct 2004

  • Cooke RG (1970) Phenylnaphthalene pigments of Lachnanthes tinctoria. Phytochemistry 9:1103–1106

    Article  CAS  Google Scholar 

  • Cooke RG, Edwards JM (1981) Naturally occurring phenalenones and related compounds. Prog Chem Org Nat Prod 40:153–190

    CAS  Google Scholar 

  • Cooke RG, Thomas RL (1975) Colouring matters of Australian plants. XVIII. Constituents of Anigozanthos rufus. Aust J Chem 28:1053–1057

    Article  CAS  Google Scholar 

  • Cordelier S, Ruffray P, Fritg B, Kauffmann S (2003) Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by Phytophthora megasperma glycoprotein elicitin. Plant Mol Biol 51:109–118

    Article  PubMed  CAS  Google Scholar 

  • Del Río JC, Jiménez-Barbero J, Chavez MI, Politi M, Gutiérrez A (2006) Phenylphenalenone type compounds from the leaf fibers of abaca (Musa textilis). J Agric Food Chem 54:8744–8748

    Article  PubMed  Google Scholar 

  • Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotech J 7:2–12

    Article  CAS  Google Scholar 

  • Della-Greca M, Lanzetta R, Molinaro A, Monaco P, Previtera L (1992) Phenalene metabolites from Eichhornia crassipes. Bioorg Med Chem Lett 2:311–314

    Article  CAS  Google Scholar 

  • Della-Greca M, Molinaro A, Monaco P, Previtera L (1993) Degraded phenalene metabolites in Eichhornia crassipes. Nat Prod Lett 1:233–238

    Article  CAS  Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    Article  PubMed  CAS  Google Scholar 

  • Duque L, Restrepo C, Sáez J, Gil J, Schneider B, Otálvaro F (2010) Synthesis of musafluorone: a naphthoxanthenone isolated from Musa acuminata. Tetrahedron Lett 51:4640–4643

    Article  CAS  Google Scholar 

  • Durango D, Quiñones W, Torres F, Rosero Y, Gil J, Echeverri F (2002) Phytoalexin accumulation in Colombian bean varieties and aminosugars as elicitors. Molecules 7:817–832

    Article  CAS  Google Scholar 

  • Echeverri F, Lanau J, Pelaez C (1986) Induccion de fitoalexinas con aminoglicosidos en hojas de banano. Actualidades Biologicas (Colombia) 15:100–104

    Google Scholar 

  • Edwards JM, Weiss U (1974) Phenylphenalenone pigments of the root system of Lachnanthes tinctoria. Phytochemistry 13:1597–1602

    Article  CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 30:968–987

    Article  Google Scholar 

  • Escobar G (2002) Ph D Thesis. Universidad de Antioquia, Medellín

  • Escobar G, Jaramillo P, Archbold R, Torres F, Quiñones W, Echeverri F (2010) Nitro-phenalenone derivatives and their activity against Black Sigatoka. Synthesis and kinetic analysis. In: Abstracts 11th tetrahedron symposium frontiers of organic chemistry. Beijing University, Beijing, 22–25 June

  • Essenberg M (2001) Prospects for strengthening plant defenses through phytoalexin engineering. Physiol Mol Plant Pathol 59:71–78

    Article  CAS  Google Scholar 

  • Fliegmann J, Mithöfer A, Wanner G, Ebel J (2004) An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen associated molecular patterns during broad host resistance. J Biol Chem 279:1132–1140

    Article  PubMed  CAS  Google Scholar 

  • Flors C, Nonell S (2006) Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc Chem Res 39:293–300

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146:381–392

    PubMed  CAS  Google Scholar 

  • Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263

    Article  PubMed  CAS  Google Scholar 

  • Grenville-Briggs L, Avrova A, Hay RC, Bruce C, Whisson S, Van West P (2010) Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biol 114:702–723

    Article  PubMed  CAS  Google Scholar 

  • Hadwiger LA, Schwochau WE (1970) Induction of phenylalanine ammonia lyase and pisatin in pea pods with polylysine, spermidine or histone fractions. Biochem Biophys Res Commun 38:683–688

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Ann Rev Phytopathol 37:285–306

    Article  CAS  Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo W, Duque L, Saez J, Arango R, Gil J, Rojano B, Schneider B, Otalvaro F (2009) Structure–activity relationship in the interaction of substituted perinaphthenones with Mycosphaerella fijiensis. J Agric Food Chem 57:7417–7421

    Article  PubMed  CAS  Google Scholar 

  • Hirai N, Ishida H, Koshimiza K (1994) A phenalenone-type phytoalexin from Musa acuminata. Phytochemistry 37:383–385

    Article  CAS  Google Scholar 

  • Hölscher D, Schneider B (1995a) The biosynthetic origin of the central one-carbon unit of phenylphenalenones in Anigozanthos preissii. Nat Prod Lett 7:177–182

    Article  Google Scholar 

  • Hölscher D, Schneider B (1995b) A diarylheptanoid in the biosynthesis of phenylphenalenones in Anigozanthos preissii. J Chem Soc Chem Commun 525–526

  • Hölscher D, Schneider B (1998) Phenylphenalenones from Ensete ventricosum. Phytochemistry 49:2155–2157

    Article  Google Scholar 

  • Hölscher D, Schneider B (1999) HPLC-NMR analysis of phenylphenalenones and a stilbene from Anigozanthos flavidus. Phytochemistry 50:155–161

    Article  Google Scholar 

  • Hölscher D, Schneider B (2000) Phenalenones from Strelitzia reginae. J Nat Prod 63:1027–1028

    Article  PubMed  Google Scholar 

  • Ito Y, Kaku H, Shibuya N (1997) Identification of a high-affinity binding protein for N acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12:347–356

    Article  PubMed  CAS  Google Scholar 

  • Jitsaeng K, Paetz C, Schneider B (2010) Phenylphenalenones from Musa cv. ‘Thepanom’ (BBB). Rec Nat Prod 4:26–30

    CAS  Google Scholar 

  • Jutidamorongphan W, Anderson JB, MacKinnon G, Manners JM, Simpson RS, Scot K (1991) Induction of β-1, 3-glucanase in barley in response to infection by fungal pathogens. Mol Plant Microbe Interact 4:234–238

    Article  Google Scholar 

  • Kamo T, Kato N, Hirai N, Tsuda M, Fujioka D, Ohigashi H (1998) Phenylphenalenone-type phytoalexins from unripe Buñgulan banana fruit. Biosci Biotech Biochem 62:95–101

    Article  CAS  Google Scholar 

  • Kamo T, Hirai N, Tsuda M, Fujioka D, Ohigashi H (2000) Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci Biotech Biochem 64:2089–2098

    Article  CAS  Google Scholar 

  • Kamo T, Hirai N, Wami K, Fujioka D, Ohigashi H (2001) New phenylphenalenones from banana fruit. Tetrahedron 57:7649–7656

    Article  CAS  Google Scholar 

  • Keen N (1977) Phytoalexins and chemicals that elicit their production. In: Hedin P (ed) Host plant resistance to pests. American Chemical Society Symposium Series (ACS SS) # 62, Washington

  • Keen N (1981) Evaluation of role of phytoalexins. In: Stapless R, Toenniessen G (eds) Plant disease control. Wiley, New York

    Google Scholar 

  • Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807–3809

    Article  CAS  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  PubMed  CAS  Google Scholar 

  • Luis J-G, Echeverri F, Torres F, Quiñones W, Cardona G, Gonzalez A, Rojas M, Lopez M, Aguiar Z, Brito I (1994a) Irenolone and emenolone: two new types of phytoalexin from Musa paradisiaca. J Organic Chem 58:4306–4308

    Article  Google Scholar 

  • Luis J-G, Quiñones W, Echeverri F, Abad T (1994b) Phenalenone-type phytoalexins from Musa acuminata. Synthesis of 4-phenyl-phenalenones. Tetrahedron 50:10963–10970

    Article  CAS  Google Scholar 

  • Luis J-G, Quiñones W, Echeverri F, Abad T, Kishi P, Perales A (1995a) New phenalenone-type phytoalexins from Musa acuminata (Colla AAA) Grand Nain. Nat Prod Lett 6:26–30

    Article  Google Scholar 

  • Luis J-G, Quiñones W, Echeverri F, Abad T, Perales A, Gonzalez A, Perales A (1995b) Intermediates with biosynthetic implications in de novo production of phenyl-phenalenone-type phytoalexins by Musa acuminata. Revised structure of emenolone. Tetrahedron 51:4117–4123

    Article  CAS  Google Scholar 

  • Luis J-G, Kishi P, Garcia F, Abad T, Cardona G, Torres F, Quiñones W, Echeverri F (1996a) Musanolones: four 9-phenylphenalenones from rhizomes of Musa acuminata. Phytochemistry 41:753–755

    Article  CAS  Google Scholar 

  • Luis J-G, San Andres L, Laohlou H-E, Quiñones W, Echeverri F (1996b) Phenylphenalenonic phytoanticipins. New acenaphtylene and dimeric phenylphenalenones from the resistant Musa selected Hybrid SH-3481. Tetrahedron 53:8249–8256

    Article  Google Scholar 

  • Lyon GD, Newton AC (1997) Do resistance elicitors offer new opportunities in integrated disease control strategies? Plant Pathol 46:636–641

    Article  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  CAS  Google Scholar 

  • Müller KO, Börger H (1940) Experimentelle untersuchungen über die phytophtora-resistenz. Kartoffel Arb Biol Reichsanstalt Landw Forstw, Berlin 23:189–231

    Google Scholar 

  • Naoumkina M, Farag MA, Sumner LW, Tang YH, Liu CJ, Dixon RA (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA 104:17909–17915

    Article  PubMed  CAS  Google Scholar 

  • Okada A, Shimizu T, Okada K, Kuzuyama T, Koga J, Shibuya N, Nojiri H, Yamane H (2007) Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol Biol 65:177–187

    Article  PubMed  CAS  Google Scholar 

  • Opitz S, Schneider B (2002) Organ-specific analysis of phenylphenalenone-related compounds in Xiphidium caeruleum. Phytochemistry 61:819–825

    Article  PubMed  CAS  Google Scholar 

  • Otalvaro F, Schneider B, Quiñones W, Torres F, Echeverri F (2002a) Correlation between phenylphenalenone phytoalexins and phytopathological properties in Musa. Structure of a phenylphenalene. Molecules 7:331–340

    Article  CAS  Google Scholar 

  • Otalvaro F, Schmitt B, Echeverri F, Schneider B, Quiñones W (2002b) Dimeric phenylphenalenones from Musa acuminata and various Haemodoracea species. Crystal structure of anigorootin. Phytochemistry 60:61–66

    Article  PubMed  CAS  Google Scholar 

  • Otalvaro F, Opitz S, Echeverri F, Quiñones W, Schneider B (2002c) Isomeric oxabenzochrysenones from Musa acuminata and Wachendorfia thyrsiflora. Nat Prod Lett 16:335–338

    Article  PubMed  Google Scholar 

  • Otalvaro F, Quinones W, Echeverri F, Schneider B (2004) Synthesis of [phenyl-13C6] lachnanthocarpone and other 13C-labelled phenylphenalenones. J Label Compd Radiopharm 47:147–159

    Article  CAS  Google Scholar 

  • Otalvaro F, Nanclares J, Vasquez LE, Quinones W, Echeverri F, Arango R, Schneider B (2007) Phenalenone type compounds from “Musa acuminata var”.Yangambi km5”(AAA) and their activity against Mycosphaerella fijiensis. J Nat Prod 70:887–890

    Article  PubMed  CAS  Google Scholar 

  • Otalvaro F, Jitsaeng K, Munde T, Echeverri F, Quinones W, Schneider B (2010) O-methylation of phenylphenalenone phytoalexins in Musa acuminata and Wachendorfia thyrsiflora. Phytochemistry 71:206–213

    Article  PubMed  CAS  Google Scholar 

  • Pare PW, Farag MA, Krishnamachari V, Zhang H, Ryu C, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85:149–159

    Article  PubMed  CAS  Google Scholar 

  • Paxton JD (1980) A new working definition of the term “phytoalexin”. Plant Dis 64:734

    Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Sem Cell Dev Biol 20:1025–1031

    Article  CAS  Google Scholar 

  • Quiñones W, Escobar G, Echeverri F, Torres F, Rosero Y, Arango V, Cardona G, Gallego A (2000) Synthesis and antifungal activity of Musa phytoalexins and structural analogs. Molecules 5:974–980

    Article  Google Scholar 

  • Rodriguez R, Echeverri F, Torres F (2010) Evaluación en campo del inductor de fitoalexinas pf-5 en el control de la Sigatoka negra Mycosphaerella fijiensis. Morelet en banano, Musa AAA. In: Paper presented at the XIX Reunión Internacional ACORBAT, Centro de Convenciones Plaza Mayor, Medellín, 8–12 Nov 2010

  • Schaffrath U, Scheinpflug H, Reisener HJ (1995) An elicitor from Pyricularia oryzae induces resistance responses in rice: isolation, characterization and physiological properties. Physiol Mol Plant Pathol 46:293–307

    Article  Google Scholar 

  • Sharp JK, Valent B, Albersheim P (1984) Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 259:11312–11320

    PubMed  CAS  Google Scholar 

  • Stover RH, Simmonds NW (1987) Bananas. Wiley, United States

    Google Scholar 

  • Takenaka S, Tamagake H (2009) Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Plant Pathol 75:340–348

    Article  Google Scholar 

  • Thomma BP, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    Article  PubMed  CAS  Google Scholar 

  • Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I (1997) The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc Natl Acad Sci 94:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Etten H, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Article  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • Weiss U (1984) Biosynthesis of 9-phenylphenalenones in plants of the family Haemodoraceae: possibly biomimetic synthesis of lachnanthocarpone by an intramolecular Diels–Alder reaction. J Chem Sci 93:1159–1169

    CAS  Google Scholar 

  • Yin H, Zhao X, Du Y (2010) Oligochitosan: a plant diseases vaccine—a review. Carbohydr Polym 82:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Echeverri.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11101-011-9217-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverri, F., Torres, F., Quiñones, W. et al. Phenylphenalenone phytoalexins, will they be a new type of fungicide?. Phytochem Rev 11, 1–12 (2012). https://doi.org/10.1007/s11101-010-9205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9205-x

Keywords

Navigation