Skip to main content
Log in

Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Diterpenoid phytoalexins such as momilactones and phytocassanes are produced via geranylgeranyl diphosphate in suspension-cultured rice cells after treatment with a chitin elicitor. We have previously shown that the production of diterpene hydrocarbons leading to phytoalexins and the expression of related biosynthetic genes are activated in suspension-cultured rice cells upon elicitor treatment. To better understand the elicitor-induced activation of phytoalexin biosynthesis, we conducted microarray analysis using suspension-cultured rice cells collected at various times after treatment with chitin elicitor. Hierarchical cluster analysis revealed two types of early-induced expression (EIE-1, EIE-2) nodes and a late-induced expression (LIE) node that includes genes involved in phytoalexins biosynthesis. The LIE node contains genes that may be responsible for the methylerythritol phosphate (MEP) pathway, a plastidic biosynthetic pathway for isopentenyl diphosphate, an early precursor of phytoalexins. The elicitor-induced expression of these putative MEP pathway genes was confirmed by quantitative reverse-transcription PCR. 1-Deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), and 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol synthase (CMS), which catalyze the first three committed steps in the MEP pathway, were further shown to have enzymatic activities that complement the growth of E. coli mutants disrupted in the corresponding genes. Application of ketoclomazone and fosmidomycin, inhibitors of DXS and DXR, respectively, repressed the accumulation of diterpene-type phytoalexins in suspension cells treated with chitin elicitor. These results suggest that activation of the MEP pathway is required to supply sufficient terpenoid precursors for the production of phytoalexins in infected rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akatsuka T, Takahashi N, Kodama O, Sekido H, Kono Y, Takeuchi S (1985) Novel phytoalexins (Oryzalexins A, B and C) isolated from rice blast leaves infected with Pricularia oryzae. Part 1: isolation, characterization and biological activities of oryzalexins. Agric Biol Chem 49:1689–1694

    CAS  Google Scholar 

  • Atawong A, Hasegawa M, Kodama O (2002) Biosynthesis of rice phytoalexin: enzymatic conversion of 3beta-hydroxy-9beta-pimara-7,15-dien-19,6beta-olide to momilactone A. Biosci Biotechnol Biochem 66:566–570

    Article  PubMed  CAS  Google Scholar 

  • Cartwright D, Langcake P, Pryce R, Leworthy D, Ride J (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537

    Article  CAS  Google Scholar 

  • Cho EM, Okada A, Kenmoku H, Otomo K, Toyomasu T, Mitsuhashi W, Sassa T, Yajima A, Yabuta G, Mori K, Oikawa H, Toshima H, Shibuya N, Nojiri H, Omori T, Nishiyama M, Yamane H (2004) Molecular cloning and characterization of a cDNA encoding ent-cassa-12,15-diene synthase, a putative diterpenoid phytoalexin biosynthetic enzyme, from suspension-cultured rice cells treated with a chitin elicitor. Plant J 37:1–8

    Article  PubMed  CAS  Google Scholar 

  • Duvold T, Bravo JM, Pale-Grosdemange C, Rohmer M (1997) Biosynthesis of 2-C-methyl-d-erythritol, a putative C 5 intermediate in the mevalonate independent pathway for isoprenoid biosynthesis. Tetrahedron Lett 38:4769–4772

    Article  CAS  Google Scholar 

  • Guevara-García A, San Román C, Arroyo A, Cortés ME, de la Luz Gutiérrez-Nava M, León P (2005) Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-erythritol 4-phosphate pathway. Plant Cell 17:628–643

    Article  PubMed  Google Scholar 

  • Heintz R, Benveniste P, Robinson WH, Coates RM (1972) Plant sterol metabolism. Demonstration and identification of a biosynthetic intermediate between farnesyl PP and squalene in a higher plant. Biochem Biophys Res Commun 49:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kabuto C, Sasaki N, Tsunagawa M, Aizawa H, Fujita K, Kato Y, Kitahara Y, Takahashi N (1973) Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett 14:3861–3864

    Article  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1993) Oryzalexin E, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 33:79–81

    Article  CAS  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1994) Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36:299–301

    Article  CAS  Google Scholar 

  • Kato H, Kodama O, Akatsuka T (1995) Characterization of an inducible P450 hydroxylase involved in the rice diterpene phytoalexin biosynthetic pathway. Arch Biochem Biophys 316:707–712

    Article  PubMed  CAS  Google Scholar 

  • Kim BR, Kim SU, Chang YJ (2005) Differential expression of three 1-deoxy-D: -xylulose-5-phosphate synthase genes in rice. Biotechnol Lett 27:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Song KS, Kim SU (2006) Identification of class 2 1-deoxy-d-xylulose 5-phosphate synthase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase genes from Ginkgo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis. Planta Med 72:234–240

    Article  PubMed  CAS  Google Scholar 

  • Kodama O, Suzuki T, Miyakawa J, Akatsuka T (1988a) Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric Biol Chem 52:2469–2473

    CAS  Google Scholar 

  • Kodama O, Yamada A, Yamamoto A, Takemoto T, Akatsuka T (1988b) Induction of phytoalexins with heavy metal ions in rice leaves. Nippon Noyaku Gakkaishi 13:615–617

    CAS  Google Scholar 

  • Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogawasawara N (1995) Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 51:7907–7918

    Article  CAS  Google Scholar 

  • Koga J, Ogawa N, Yamauchi T, Kikuchi M, Ogasawara N, Shimura M (1997) Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44:249–253

    Article  Google Scholar 

  • Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998a) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    Article  CAS  Google Scholar 

  • Kuzuyama T, Takahashi S, Watanabe H, Seto H (1998b) Direct formation of 2-C-methyl-d-erythritol 4-phosphate from 1-deoxy-d-xylulose 5-phosphate by 1-deoxy-d-xylulose 5-phosphate reductoisomerase, a new enzyme in the non-mevalonate pathway to isopentenyl diphosphate. Tetrahedron Lett 39:4509–4512

    Article  CAS  Google Scholar 

  • Kuzuyama T, Takahashi S, Seto H (1999) Construction and characterization of Escherichia coli disruptants defective in the yaeM gene. Biosci Biotechnol Biochem 63:776–778

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Takagi M, Kaneda K, Dairi T, Seto H (2000) Formation of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol from 2-C-methyl-d-erythritol 4-phosphate by 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway. Tetrahedron Lett 41:703–706

    Article  CAS  Google Scholar 

  • Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Nemoto T, Cho EM, Okada A, Okada K, Otomo K, Kanno Y, Toyomasu T, Mitsuhashi W, Sassa T, Minami E, Shibuya N, Nishiyama M, Nojiri H, Yamane H (2004) Stemar-13-ene synthase, a diterpene cyclase involved in the biosynthesis of the phytoalexin oryzalexin S in rice. FEBS Lett 571:182–186

    Article  PubMed  CAS  Google Scholar 

  • Nes WD, Venkatramesh M (1999) Enzymology of phytosterol transformations. Crit Rev Biochem Mol Biol 34:81–93

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS, Kamiya Y (2002) Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. Planta 215:339–344

    Article  PubMed  CAS  Google Scholar 

  • Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, Oikawa H, Toshima H, Itoh H, Matsuoka M, Sassa T, Toyomasu T (2004a) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem 68:2001–2006

    Article  PubMed  CAS  Google Scholar 

  • Otomo K, Kenmoku H, Oikawa H, Konig WA, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T (2004b) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J 39:886–893

    Article  PubMed  CAS  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci USA 97:6451–6456

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T, Sasaki T, Higo K (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    Article  PubMed  CAS  Google Scholar 

  • Sauret-Güeto S, Botella-Pavía P, Flores-Pérez U, Martínez-García JF, San Román C, León P, Boronat A, Rodríguez-Concepción M (2006) Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiol 141:75–84

    Article  PubMed  Google Scholar 

  • Scolnik PA, Bartley GE (1994) Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiol 104:1469–1470

    Article  PubMed  CAS  Google Scholar 

  • Stoessl A (1980) Phytoalexins: a biogenetic perspective. Phytopathol Z 99:251–272

    CAS  Google Scholar 

  • Subba R, Strange RN (1994) Chemistry, biology, and role of groundnut phytoalexins in resistance to fungal attack. In: Daniel M, Purkayastha RP (eds) Handbook of phytoalexin metabolism and action. Marcel Dekker, New York, pp 199–227

    Google Scholar 

  • Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Tamogami S, Mitani M, Kodama O, Akatsuka T (1993) Oryzalexin S structure: a new stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron 49:2025–2032

    Article  CAS  Google Scholar 

  • Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett 412:61–64

    Article  PubMed  CAS  Google Scholar 

  • VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6:1191–1192

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254

    Article  PubMed  CAS  Google Scholar 

  • Yajima A, Mori K (2000) Diterpenoid total synthesis, XXXII synthesis and absolute configuration of (−)-phytocassane D, a diterpene phytoalexin isolated from the rice plant, Oryza sativa. Eur J Org Chem 2000:4079–4091

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Yoshiaki Nagamura and Ms Ritsuko Motoyama of the Rice Genome Resource Center for technical support with the microarray analysis, and also for providing the rice full-length cDNA clone that was developed in the Rice Genome Project of the National Institute of Agrobiological Sciences, Japan, and Prof Tadao Asami in The University of Tokyo for distribution of 5-ketoclomazone. This work was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Okada.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, A., Shimizu, T., Okada, K. et al. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol Biol 65, 177–187 (2007). https://doi.org/10.1007/s11103-007-9207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9207-2

Keywords

Navigation