Skip to main content
Log in

Regulation and function of specifier proteins in plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Specifier proteins are responsible for the diversification of biologically active products formed upon myrosinase-catalyzed glucosinolate hydrolysis and are therefore assumed to have an impact on the defensive function of the glucosinolate–myrosinase system. Among glucosinolate hydrolysis products, the generation of epithionitriles and organic thiocyanates requires the presence of epithiospecifier protein (ESP) and thiocyanate-forming protein (TFP), respectively, while myrosinase alone is sufficient for the production of isothiocyanates. Both ESP and TFP also promote the formation of simple nitriles upon myrosinase-catalyzed glucosinolate hydrolysis. Only little is known about the biological effects of epithionitriles and thiocyanates. Moreover, simple nitriles have repeatedly been reported to be less toxic to plant pathogens and herbivorous insects than the correponding isothiocyanates. Thus, it has remained an open question how plants benefit from the presence of specifier proteins. In this review, we survey the biological effects of different types of glucosinolate hydrolysis products on insects and pathogens as well as the current knowlegde on the developmental, organ specific and stimuli-mediated regulation of specifier proteins. Integrating these findings can help us to better understand the ecological functions of plant specifier proteins as well as the co-evolution of glucosinolate-containing plants and their insect herbivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESM1:

Epithiospecifier modifier 1

ESP:

Epithiospecifier protein

JA:

Jasmonic acid

MBP:

Myrosinase-binding protein

MeJA:

Methyl jasmonate

NSP:

Nitrile-specifier protein

References

  • Adams J, Kelso R, Cooley L (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10:17–24. doi:10.1016/S0962-8924(99)01673-6

    Article  PubMed  CAS  Google Scholar 

  • Agerbirk N, De Vos M, Kim JH, Jander G (2008) Indole glucosinolate breakdown and its biological effects. Phytochem Rev (this issue). doi:10.1007/s11101-008-9098-0

  • Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415. doi:10.1023/A:1024265420375

    Article  PubMed  CAS  Google Scholar 

  • Andréasson E, Jorgensen LB, Hoglund AS, Rask L, Meijer J (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763. doi:10.1104/pp.127.4.1750

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562. doi:10.1111/j.1365-313X.2006.02716.x

    Article  PubMed  CAS  Google Scholar 

  • Bending GD, Lincoln SD (2000) Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol Biochem 32:1261–1269. doi:10.1016/S0038-0717(00)00043-2

    Article  CAS  Google Scholar 

  • Benn M (1977) Glucosinolates. Pure Appl Chem 49:197–210. doi:10.1351/pac197749020197

    Article  CAS  Google Scholar 

  • Bernardi R, Negri A, Ronchi S, Palmieri S (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett 467:296–298. doi:10.1016/S0014-5793(00)01179-0

    Article  PubMed  CAS  Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860. doi:10.1104/pp.126.2.849

    Article  PubMed  CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi:10.1016/S0031-9422(02)00549-6

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Bergner A, Gershenzon J, Wittstock U (2006a) Glucosinolate hydrolysis in Lepidium sativum—identification of the thiocyanate-forming protein. Plant Mol Biol 63:49–61. doi:10.1007/s11103-006-9071-5

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Markert J, Gershenzon J, Wittstock U (2006b) Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalyzed hydrolysis of glucosinolates. FEBS J 273:2432–2446. doi:10.1111/j.1742-4658.2006.05252.x

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Müller R, Gershenzon J, Wittstock U (2006c) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32:2333–2349. doi:10.1007/s10886-006-9149-1

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Rice M, Hause B, Gershenzon J, Wittstock U (2007a) Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Plant Mol Biol 64:173–185. doi:10.1007/s11103-007-9143-1

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Zhang ZY, Ober JA, Lambrix VM, Wittstock U, Gershenzon J et al. (2007b) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry. doi:10.1016/j.phytochem.2007.08.027

  • Buskov S, Serra B, Rosa E, Sorensen H, Sorensen JC (2002) Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis cv. Woll). J Agric Food Chem 50:690–695. doi:10.1021/jf010470s

    Article  PubMed  CAS  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products. American Chemical Society, Washington, DC, pp 155–181

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. doi:10.1094/MPMI-18-0923

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Kriksunov KL, Jander G (2008) Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiol 146:916–926. doi:10.1104/pp.107.112185

    Article  PubMed  CAS  Google Scholar 

  • ElSayed G, Louveaux A, Mavratzotis M, Rollin P, Quinsac A (1996) Effects of glucobrassicin, epiprogoitrin and related breakdown products on locusts feeding: Schouwia purpurea and desert locust relationships. Entomol Exp Appl 78:231–236. doi:10.1007/BF00187521

    Article  CAS  Google Scholar 

  • Eriksson S, Ek B, Xue JP, Rask L, Meijer J (2001) Identification and characterization of soluble and insoluble myrosinase isoenzymes in different organs of Sinapis alba. Physiol Plant 111:353–364. doi:10.1034/j.1399-3054.2001.1110313.x

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi:10.1016/S0031-9422(00)00316-2

    Article  PubMed  CAS  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123–201

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379. doi:10.1104/pp.107.095596

    Article  PubMed  CAS  Google Scholar 

  • Fieldsend J, Milford GFJ (1994) Changes in glucosinolates during crop development in single-low and double-low genotypes of Winter Oilseed Rape (Brassica napus). 1. Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulfur within the crop. Ann Appl Biol 124:531–542. doi:10.1111/j.1744-7348.1994.tb04157.x

    Article  CAS  Google Scholar 

  • Foo HL, Gronning LM, Goodenough L, Bones AM, Danielsen BE, Whiting DA et al (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243–246. doi:10.1016/S0014-5793(00)01176-5

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh R, Mitchell ND (1976) The involvement of flavour volatiles in the resistance to downy mildew of wild and cultivated forms of Brassica oleracea. New Phytol 77:391–398

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  PubMed  CAS  Google Scholar 

  • Höglund AS, Jones AM, Josefsson LG (2002) An antigen expressed during plant vascular development crossreacts with antibodies towards KLH (keyhole limpet hemocyanin). J Histochem Cytochem 50:999–1003

    PubMed  Google Scholar 

  • Husebye H, Chadchawan S, Winge P, Thangstad OP, Bones AM (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188. doi:10.1104/pp.010925

    Article  PubMed  CAS  Google Scholar 

  • Jander G, Cui JP, Nhan B, Pierce NE, Ausubel FM (2001) The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni. Plant Physiol 126:890–898. doi:10.1104/pp.126.2.890

    Article  PubMed  CAS  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hahnel U et al (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508. doi:10.1007/s11120-005-7386-8

    Article  PubMed  CAS  Google Scholar 

  • Kawakishi S, Kaneko T (1987) Interactions of proteins with allyl isothiocyanate. J Agric Food Chem 35:85–88. doi:10.1021/jf00073a020

    Article  CAS  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865. doi:10.1104/pp.106.090662

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2008) A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem Rev (this issue). doi:10.1007/s11101-008-9102-8

  • Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608

    Article  PubMed  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 11:11

    Google Scholar 

  • Lambrix VM, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  PubMed  CAS  Google Scholar 

  • Lenman M, Falk A, Rodin J, Hoglund AS, Ek B, Rask L (1993) Differential expression of myrosinase gene families. Plant Physiol 103:703–711. doi:10.1104/pp.103.3.703

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kushad MM (2004) Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana). J Agric Food Chem 52:6950–6955. doi:10.1021/jf0401827

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Kiddle G, Bennett R, Doughty K, Wallsgrove R (1999) Variation in the glucosinolate content of vegetative tissues of Chinese lines of Brassica napus L. Ann Appl Biol 134:131–136. doi:10.1111/j.1744-7348.1999.tb05245.x

    Article  CAS  Google Scholar 

  • Li Q, Eigenbrode SD, Stringham GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419. doi:10.1023/A:1005535129399

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Morgan DG, Strong FM (1962) Naturally occurring insecticides—identification of 2-phenylethylisothiocyanate as an insecticide occurring naturally in edible part of turnips. J Agric Food Chem 10:30–33. doi:10.1021/jf60119a009

    Article  Google Scholar 

  • Little D, Gouhier-Darimont C, Bruessow F, Reymond P (2007) Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiol 143:784–800. doi:10.1104/pp.106.090837

    Article  PubMed  CAS  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, Inc., San Diego, pp 123–164

    Google Scholar 

  • Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52:775–786. doi:10.1023/A:1025045217859

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Iori R, Leoni O, Marchi A (1993) In vitro activity of glucosinolate-derived isothiocyanates against postharvest fruit pathogens. Ann Appl Biol 123:155–164. doi:10.1111/j.1744-7348.1993.tb04082.x

    Article  CAS  Google Scholar 

  • Matile P (1980) The mustard oil bomb—compartmentation of the myrosinase system. Biochem Physiol Pflanz 175:722–731

    CAS  Google Scholar 

  • Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54:2069–2076. doi:10.1021/jf0525277

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830. doi:10.1105/tpc.106.042705

    Article  PubMed  CAS  Google Scholar 

  • Mithen RF, Lewis BG (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Br Mycol Soc 87:433–440

    Article  CAS  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085. doi:10.1104/pp.125.2.1074

    Article  PubMed  CAS  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203. doi:10.1002/arch.10064

    Article  PubMed  CAS  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA et al (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052. doi:10.1105/tpc.107.051383

    Article  PubMed  CAS  Google Scholar 

  • Noret N, Meerts P, Poschenrieder C, Barcelo J, Escarre J (2005) Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–772. doi:10.1111/j.1469-8137.2004.01286.x

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Chumala PB, Suchy M (2003) Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry 64:949–956. doi:10.1016/S0031-9422(03)00441-2

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Sarwar MG, Suchy M, Adio AM (2006) The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity. Phytochemistry 67:1503–1509. doi:10.1016/j.phytochem.2006.05.020

    Article  PubMed  CAS  Google Scholar 

  • Petersen BL, Chen SX, Hansen CH, Olsen CE, Halkier BA (2002) Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214:562–571. doi:10.1007/s004250100659

    Article  PubMed  CAS  Google Scholar 

  • Peterson CJ, Tsao R, Coats JR (1998) Glucosinolate aglucones and analogues: insecticidal properties and a QSAR. Pestic Sci 54:35–42. doi:10.1002/(SICI)1096-9063(199809)54:1<35::AID-PS776>3.0.CO;2-A

    Article  CAS  Google Scholar 

  • Peterson CJ, Cosse A, Coats JR (2000) Insecticidal components in the meal of Crambe abyssinica. J Agric Urban Entomol 17:27–35

    CAS  Google Scholar 

  • Petroski RJ, Kwolek WF (1985) Interaction of a fungal thioglucoside glucohydrolase and cruciferous plant epithiospecifier protein to form 1-cyanoepithioalkanes: implications of an allosteric mechanism. Phytochemistry 24:213–216. doi:10.1016/S0031-9422(00)83521-9

    Article  CAS  Google Scholar 

  • Porter AJR, Morton AM, Kiddle G, Doughty KJ, Wallsgrove RM (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.) Leaves. 1. Effect of leaf age and position. Ann Appl Biol 118:461–467. doi:10.1111/j.1744-7348.1991.tb05647.x

    Article  CAS  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113. doi:10.1023/A:1006380021658

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147. doi:10.1105/tpc.104.026120

    Article  PubMed  CAS  Google Scholar 

  • Rosa E, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. In: Janick J (ed) Horticultural reviews. Wiley, New York, pp 99–215

    Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas—III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112. doi:10.1023/A:1004381129991

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660. doi:10.1073/pnas.97.21.11655

    Article  PubMed  CAS  Google Scholar 

  • Seo ST, Tang CS (1982) Hawaiian fruit-flies (Diptera, Tephritidae)—toxicity of benzyl isothiocyanate against eggs or 1st instars of 3 species. J Econ Entomol 75:1132–1135

    Google Scholar 

  • Thangstad OP, Gilde B, Chadchawan S, Seem M, Husebye H, Bradley D et al (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol 54:597–611. doi:10.1023/B:PLAN.0000038272.99590.10

    Article  PubMed  CAS  Google Scholar 

  • Tierens K, Thomma BPH, Brouwer M, Schmidt J, Kistner K, Porzel A et al (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699. doi:10.1104/pp.125.4.1688

    Article  PubMed  CAS  Google Scholar 

  • Tookey HL (1973) Crambe thioglucoside glucohydrolase (EC 3.2.3.1)—separation of a protein required for epithiobutane formation. Can J Biochem 51:1654–1660

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayashi Y, Kondo M et al (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175. doi:10.1093/pcp/pci232

    Article  PubMed  CAS  Google Scholar 

  • Virtanen AI (1962) On enzymic and chemical reactions in crushed plants. Arch Biochem Biophys Suppl 1:200–208

    Google Scholar 

  • Visvalingam S, Honsi TG, Bones AM (1998) Sulphate and micronutrients can modulate the expression levels of myrosinases in Sinapis alba plants. Physiol Plant 104:30–37. doi:10.1034/j.1399-3054.1998.1040105.x

    Article  CAS  Google Scholar 

  • Wadleigh RW, Yu SJ (1988a) Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J Chem Ecol 14:1279–1288. doi:10.1007/BF01019352

    Article  CAS  Google Scholar 

  • Wadleigh RW, Yu SJ (1988b) Metabolism of an organothiocyanate allelochemical by glutathione transferase in three lepidopterous insects. J Econ Entomol 81:776–780

    CAS  Google Scholar 

  • Walker JC, Morell S, Foster HH (1937) Toxicity of mustard oils an related sulfur compounds to certain fungi. Am J Bot 24:536–541. doi:10.2307/2437076

    Article  CAS  Google Scholar 

  • Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol 147:415–428. doi:10.1104/pp.107.115279

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Burow M (2007) Tipping the scales—specifier proteins in glucosinolate hydrolysis. IUBMB Life 59:744–751. doi:10.1080/15216540701736277

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Kliebenstein D, Lambrix VM, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo JT (ed) Recent advances in phytochemistry—integrative phytochemistry: from ethnobotany to molecular ecology. Elsevier, Amsterdam, pp 101–126

    Chapter  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864. doi:10.1073/pnas.0308007101

    Article  PubMed  CAS  Google Scholar 

  • Xue JP, Pihlgren U, Rask L (1993) Temporal, cell-specific, and tissue-preferential expression of myrosinase genes during embryo and seedling development in Sinapis alba. Planta 191:95–101. doi:10.1007/BF00240900

    Article  CAS  Google Scholar 

  • Zabala MD, Grant M, Bones AM, Bennett R, Lim YS, Kissen R et al (2005) Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry 66:859–867. doi:10.1016/j.phytochem.2005.02.026

    Article  CAS  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875. doi:10.1104/pp.106.090035

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-Y, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536. doi:10.1105/tpc.105.039602

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Daniel J. Kliebenstein (UC Davis) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Wittstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burow, M., Wittstock, U. Regulation and function of specifier proteins in plants. Phytochem Rev 8, 87–99 (2009). https://doi.org/10.1007/s11101-008-9113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-008-9113-5

Keywords

Navigation